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Proteins are the fundamental unit of computation and signal processing

in biological systems. A quantitative understanding of protein biophysics is

of paramount importance, since even slight malfunction of proteins can lead

to diverse and severe disease states. However, developing accurate and useful

mechanistic models of protein function can be strikingly elusive. I demonstrate

that the adoption of Bayesian statistical methods can greatly aid in model-

ing protein systems. I first discuss the pitfall of parameter non-identifiability

and how a Bayesian approach to modeling can yield reliable and meaning-

ful models of molecular systems. I then delve into a particular case of non-

identifiability within the context of an emerging experimental technique called

single molecule photobleaching. I show that the interpretation of this data is

non-trivial and provide a rigorous inference model for the analysis of this perva-

sive experimental tool. Finally, I introduce the use of nonparametric Bayesian

inference for the analysis of single molecule time series. These methods aim

to circumvent problems of model selection and parameter identifiability and
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are demonstrated with diverse applications in single molecule biophysics. The

adoption of sophisticated inference methods will lead to a more detailed un-

derstanding of biophysical systems.
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Chapter 1

Introduction

1.1 Protein Biophysics

Proteins are the fundamental unit of computation and signal processing

in biological systems. The coordinated actions of protein systems are respon-

sible for complex cellular processes such as DNA replication/transcription,

muscle contraction, and action potential generation. Even slight mutations in

proteins can lead to severe disease states including epilepsy (Caterall, 2012),

cardiac arrhythmia (Splawski et al., 2000), cystic fibrosis (Vankeerberghen

et al., 1998), sickle cell disease (Higgs et al., 1989), and muscular dystrophy

(Roberts et al., 1992), among very many others. Therefore, it is vitally impor-

tant to develop a detailed and mechanistic understanding of protein function,

and malfunction, in order to develop effective treatments and therapies for

diverse diseases.

The quantitative modeling of biophysical systems has a rich history,

with several exemplary investigations throughout the 20th century. In the

1950s, Alan Hodgkin and Andrew Huxley embarked on a series of studies to

understand the ionic basis of the action potential (Hodgkin and Huxley, 1952).

In this work, they argued for the existence of distinct voltage-gated conduc-
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tances within axon membranes, which turn on and off in response to voltage

fluctuations and which act in concert to shape the action potential. In their

model, they imagined that each of these conductances might exist in one of

two states (conductive and non-conductive) and the transition rate between

these states is altered by transmembrane voltage. Through careful and thor-

ough experimentation, they were able to measure the voltage dependence of

each of these conductances and then combine these into a general dynamical

system model which could accurately explain the evolution of voltages and

conductances underlying the action potential.

In earlier work, Lenor Michaelis and Maud Menten sought to develop a

quantitative theory of enzyme kinetics (Michaelis and Menten, 1913). In their

model, an enzyme E and a substrate S evolved toward an enzymatic product

P according to the kinetic scheme,

E + S 
 ES
kcat−−→ E + P. (1.1)

In the limit where substrate concentration is far in excess of enzyme

concentration, the rate of product formation is given by,

dP

dt
= kcatE

S

Km + S
, (1.2)

where Km is the substrate concentration at which dP
dt

is half maximal.

Thus, the product formation rate increases asymptotically toward its maxi-

mum value of kcatE. This model has been widely successful to explain the

kinetic parameters Km and kcat in a variety of biochemical systems.
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More recently, Jacques Monod, Jeffries Wyman and Jean-Pierre Changeaux

sought to understand the molecular basis of cooperativity in ligand binding

systems (Monod et al., 1965). In this work, they explain binding cooperativ-

ity through a model of concerted allostery (see Figure 1.1). In this model, we

imagine that a molecule can access one of two conformational states, denoted

T and R. Both states are accessible to the protein in the absence of ligand, but

one state is energetically preferred by a factor of L. Regulation of the protein

by the ligand is achieved by supposing that the ligand binds preferably to the

T state than to the R state. That is, the ligand binding affinity for each state

is denoted kR and kT and we suppose that kT > kR. Therefore, the presence

of ligand shifts the equilibrium between states R and T toward the state with

higher ligand affinity. The effect of ligand on the equilibrium distribution of

states R and T is called allostery and, in the model, is equal to the ratio of

affinities, kR/kT . Importantly, this model of ligand binding to a single pro-

tein can be easily extended to the case of a homomeric receptor of multiple

subunits. Here, the state equilibrium constant L is changed by a factor of

(kR/kT )2, (kR/kT )3, (kR/kT )4 for a dimer, trimer, and tetramer receptor, and

so on. This model of cyclic allostery has been used to model many systems

including hemoglobin (Ackers, et al., 1992), ligand-gated ion channels (Karlin,

1967; Lape et al., 2008), and voltage-gated ion channels (Marks and Jones,

1992; Zagotta et al., 1994; Horrigan and Aldrich, 2002), among many others.
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Figure 1.1: Cyclic allosteric model of Monod, Wyman, and Changeux. (Left)
In this model, the protein can exist in one of two states, R or T, both of
which it can access in the presence or absence of ligand. The equilibrium
constant between the two states (in the absence of ligand) is denoted L. It is
assumed that ligands bind each state with distinct affinity such that kT > kR.
Therefore, the presence of ligand favors the T state by a factor proportional
to c = kT/kR. (Right) This model can be extended to multisite receptors and
provides a simple explanation of cooperative binding. Note that subsequent
binding events alter the R↔ T transition by an additional factor of kT/kR.
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These three examples, which sit amongst numerous others, demonstrate

features that are common to many quantitative models of biomolecules. Very

generally, we imagine that the system of interest has access to some fixed

number of biophysically relevant states which are connected in some particu-

lar arrangement. The dynamics of the system between these states is governed

by transition rates linking each state. Models of this kind belong to a gen-

eral class called state space models (SSMs) which are widely used to describe

many phenomena (Oppenheim and Schafer, 1999). With using an SSM to

model a biomolecular system, we are generally aiming to learn three things

about the system: the states, the connectivity between the states, and the

transition rates between the states. When SSMs are interpreted within a bio-

physical context, the system states are thought to correspond to energetically

semi-stable conformational states of the protein and the transition dynamics

governed by free-energy barriers and the principles of statistical physics. In

this setting, state transitions occur in a memoryless way, simply depending on

free-energy barriers separating states. For this reason, SSMs of biomolecules

can be thought of as discrete-state Markov processes. The task for the ex-

perimentalist is to use the tools of Markov theory, and whatever experimental

manipulations are available, to develop accurate Markovian models and esti-

mate relevant transition rates. As will be discussed throughout the following

chapters, the task of using data to develop meaningful models can be non-

trivial as systems of higher complexity are studied.
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1.2 Statistical Inference

Statistics is quantified knowing. Figure 1.2 is a representation of the

process of modeling systems in the world. At left, our system of interest un-

dergoes some dynamics which are hidden from us; the system exists in a black

box. However, we can make some measurements of the system. Inevitably

though, we can only measure some, never all, of the properties (or degree of

freedom) of the system. Therefore, any measurement induces a coarse-graining

or otherwise obfuscation of the true system dynamics. Our task is then to use

this imperfect information in order to construct the best possible model of the

true underlying system. Given some measurement we have made about the

world, it is the tools of statistical inference that allow us to rigorously quantify

exactly what we do and do not know. It is only statistics that shines a light

on the relationship between the things we would like know, and the things we

can confidently assert.
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Figure 1.2: Schematic of the process of modeling natural systems. At left, we
have our system of interest which undergoes some dynamics which are unavoid-
ably hidden from us; the system exists in a black box. Making measurements
of the system allows us access to some, but certainty not all, of the system’s
degrees of freedom and thus induces a coarse-graining of the true properties of
the system. The task as a modeler is to is to use the coarse-grained measure-
ment to devise an accurate model of the true dynamics. Imagery stolen from
Jim Crutchfield lecture notes.
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Since much of what is described in the following chapters champions

a Bayesian approach to the quantitative modeling of proteins, what follows is

a brief overview of the history and philosophy of Bayesian inference as con-

trasted with more common techniques. The Frequentist approach to statis-

tics gained wide popularity in the 20th century after the remarkable work

of Ronald Fisher, Jerzy Neyman and others. Frequentists proposed that one

could quantify uncertainty and confidence by appealing to a notion of repeated

experimentation (Fisher, 1922; Neyman, 1939). The data we have, a frequen-

tist might argue, is but one random draw from the set of all possible data

we might have seen. Therefore, we can appeal to the notion of an infinite

number of repeated experiments and ask how rare our data is compared to all

possible draws. This supposition is incredibly powerful if we can make certain

assumptions about the kinds of distributions from which our data were drawn.

Thanks to the Central Limit Theorem, we have strong assurance that many

kinds of random variables should be approximately Normally distributed, al-

lowing Frequentists to derive elegant expressions for what various data draws

ought to look like. From these ideas emerge the mainstays of common statisti-

cal usage: hypothesis tests, ANOVA, multiple regression. The generality and

simplicity of frequentist methodologies have lead to their widespread adoption

in nearly all areas of science and engineering.

An alternative philosophy of statistics was proposed by Thomas Bayes

and fully developed by Pierre-Simon Laplace. In what history has termed

Bayesian inference, an opposite approach is taken to quantifying uncertainty.
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The Bayesian prefers not to appeal to the Frequentists’ infinite repetition of

experiments, but instead accepts the data as fixed and treats the parameters

of interest as random. That is not to say that the parameters of the world are

genuinely believed to be random, but instead that we treat them as random

variables (given the data) in order to quantify uncertainty.

Figure 1.3 summarizes the basic viewpoints of these two camps with

respect to their philosophy of statistics. At the top we see the Frequentist view:

the parameters we seek are some fixed property of the world and the process

of gathering finite data induces randomness. In this view, we need to consider

p(x|θ), the probability of seeing various possible datasets x, given a fixed value

of θ. The bottom of Figure 1.3 shows the Bayesian view, which is opposite.

Here, we consider that the data are fixed, and are instead interested in the

set of all possible θ that could have generated the data and a quantification

thereof, p(θ|x).

From a simple manipulation of the definition of joint and conditional

probability, we can arrive at Bayes’ rule,

p(θ|x) =
p(x|θ)p(θ)
p(x)

. (1.3)

This equation provides a method to calculate the posterior distribu-

tion, p(θ|x), which quantifies the probability distribution over parameters θ,

given data x. The components of Bayes rule are: the likelihood p(x|θ), the

prior distribution p(θ), and the marginal evidence p(x). In common practice,

9
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parameters are random

x

data are �xed

Figure 1.3: Diagram of Frequentist and Bayesian philosophy of statistics. Im-
agery adapted from Jonathan Pillow lecture notes.
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we really only need to know the posterior distribution up to a constant of

proportionality, so Bayes’ rule is most commonly seen as,

p(θ|x) ∝ p(x|θ)p(x). (1.4)

Bayes rules states that the thing we’re interested in, p(θ|x), is simply

equal to the Frequentist’s likelihood, p(x|θ), multiplied by a prior distribution,

p(θ). The prior distribution quantifies our beliefs about θ before the exper-

iment is performed. The prior distribution, which is inherently subjective,

has been a source of contention between Frequentists and Bayesians, leading

some Bayesians to expend effort to try to devise prior distributions which are

as uninformative and objective as possible (Jeffrys, 1945). In fact, it was a

rejection of the notion of incorporating prior beliefs into data analysis that left

Bayesian methods in the background for the past few centuries. This battle

became especially fierce with the demonstrated success of Frequentist methods

in the early 20th century. I’ll not belabor an extensive history of the ebb and

flow of Bayesian methods, but a very entertaining account can be found in

The Theory That Would Not Die, by Sharon B. McGrayne.

Despite continued resistance, Bayesian methods have had a resurgence

in recent decades due to advances in computing power. Notice that Bayes’

rule (equation 1.4) is hardly different than the Frequentist likelihood function,

therefore it is hard to imagine situations where one method is clearly better or

worse than the other. Recall that much of the utility of Frequentist methods

11



is that under fairly general assumptions, we can derive analytical expressions

for optimal estimates of parameters and confidence intervals. The Bayesian

could do the same, incorporating prior beliefs in order to derive a simple form

of the posterior distribution. However, when the models that are considered

become arbitrarily complex, we won’t necessarily be able to derive a simple

form for Frequentist (or Bayesian) confidence intervals. The resolution for the

Bayesian-minded investigator comes in the form of efficient algorithms for es-

timating posterior distributions. Known collectively as Markov chain Monte

Carlo sampling, these methods rely on the strategy that we might approxi-

mate any arbitrarily complex probability distribution by drawing independent

and identically distributed (iid) samples from it (Tierney, 1994). The poste-

rior distribution, p(θ|x), will generally be very high-dimensional and without

a simple closed form. Therefore, drawing iid samples from it might appear to

be exactly as challenging as computing the posterior by brute force. However,

MCMC achieves this goal by simulating a Markov chain whose limiting dis-

tribution is the posterior distribution of interest. Then, by simply simulating

the Markov chain for some finite amount of time, we generate a finite number

of iid samples from the target distribution.

Generating a Markov chain whose limiting distribution is some partic-

ular target distribution can be achieved in several ways. The first of these,

now known as the Metropolis-Hastings algorithm, was proposed in the 1950s in

order to approximate high-dimensional problems in particle physics (Metropo-

lis et al., 1953). For simplicity, I’ll describe a simple special case called the

12



Metropolis Random Walk. For iteration i of the algorithm, the Markov chain

is in position θi in the parameter space. A potential transition to a new point,

θ̃, is generated by a random walk according to the following rules. The pos-

terior probability of this potential point, p(θ̃|yN), is computed and compared

to the posterior probability of the current position of the chain, p(θi|yN). If

the proposal point has greater posterior probability than the current point,

then it is accepted as a sample from the posterior distribution. If it has lower

posterior probability, then it is rejected with probability proportional to the

decrease in posterior probability. Thus, transitions of the Markov chain are

accepted with probability α, where

α = min

(
1,
p(θ̃|yN)

p(θi|yN)

)
. (1.5)

This algorithm results in a Markov chain that explores the parameter

space in proportion to the posterior probability. Therefore, the aggregate posi-

tions of the chain in each dimension provide iid samples from the corresponding

marginal posterior distributions. This algorithm excels in its simplicity and its

generality - we can use Metropolis-Hastings with any model for which we can

compute posterior probability. In Chapter 2, I use this algorithm to perform

Bayesian inference in a variety of biophysical settings including ligand binding

models and dynamical systems.

An alternative implementation of MCMC, which I use in Chapter 4,

is known as Gibbs sampling (Geman and Geman, 1984). Consider a general

13



joint probability distribution between two random variables, p(A,B). From

the definition of conditional probability,

p(A|B) =
p(A,B)

p(B)
(1.6)

p(A,B) = p(B)p(A|B) (1.7)

p(A,B) ∝ p(A|B). (1.8)

Similarly, we could calculate the condition density with respect to the

other variable,

p(B|A) =
p(A,B)

p(A)
(1.9)

p(A,B) = p(A)p(B|A) (1.10)

p(A,B) ∝ p(B|A). (1.11)

Thus, the joint distribution, p(A,B), is linearly proportional to both

conditional distributions, p(A|B) and p(B|A). This fact holds generally for

joint distributions over any number of random variables and is the basis of

Gibbs sampling. The strategy is that while the joint distribution, p(A,B)

might have no simple closed form, we can likely derive a simple form of

each univariate conditional distribution. Generally, let p(θ1, ..., θK |x) be a

K-dimensional posterior distribution with no simple closed form. If each uni-

variate conditional distribution has a closed form such as p(θ1|θ2, ..., θK , x) ∝
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F (θ1), then Gibbs sampling proceeds as following. For each iteration i of the

algorithm, we draw the ith random sample of each parameter according the

univariate conditional distributions,

θi1 ∼ p(θ1|θi−12 , ..., θi−1K , x) = F (θ1) (1.12)

θi2 ∼ p(θ2|θi1, ..., θi−1K , x) = F (θ2) (1.13)

... (1.14)

θiK ∼ p(θK |θi1, ..., θi−1K−1, x) = F (θK). (1.15)

Note that in this algorithm there is no accept/reject criterion since each

sample is drawn iid from the corresponding conditional posterior distribution.

This allows for better algorithm efficiency as compared to Metropolis-Hastings.

Finally, I briefly mention other methods of MCMC, though they are not used

here. Hamiltonian Monte Carlo (Neal, 2011) makes an analogy to the Hamil-

tonian energy function of classical physics in order to construct a Markov

chain which explores posterior distributions faster and more thoroughly than

Metropolis-Hastings and this approach has been generalized (Girolami and

Calderhead, 2011). These sampling methods, and others, aim to efficiently

explore complex posteriors by adapting to the local structure of the distribu-

tions. For high-dimensional biophysical models, I suspect that these adaptive

methods will be required going forward.

It is important to appreciate what these computational methods make

possible. In biophysics, detailed mechanistic models are evaluated based on
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their ability to explain carefully controlled experimentation. Given some data

x and some model p(x|θ), we would like to use the data to gain a good estimate

of the true value of θ; we want to fit the model to the data. As Frequentists, we

could approach this is many ways, but a good one would be to find the value

of θ which yields the maximum likelihood, p(x|θ). This maximum likelihood

estimate (MLE) will be a consistent and unbiased estimate of the true θ under

some very general assumptions (Cramer, 1946). And if we wanted a confidence

interval for this parameter, we might be able to use the likelihood function to

derive this interval. However, these methods can become unreliable as we

seek more complex models with many interacting parameters. In Chapter

2, I give a technical discussion of the shortcomings of MLE-based methods

for modeling biophysical systems. An inevitable trend is toward biophysical

models of higher complexity. In these settings, common inference methods

(MLE) are insufficient to assure us that our models are useful and accurate.

The Bayesian approach, with the aid of MCMC, allows us to use rigorous

inference methods with arbitrarily complex models and gives us a sophisticated

way of evaluating models and biophysical parameters.

1.3 Chapter Overview

In the following chapters, I describe the benefits gained by incorporat-

ing Bayesian methods into the quantitative modeling of biophysical systems.

In Chapter 2, I describe the pitfall of parameter non-identifiability.

Models of biophysical systems are often evaluated on their ability to explain
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controlled experiments and estimates of relevant biophysical parameters are

those which provide the best fit to the data. However, common models often

involve a large number of non-independent parameters, the result being that

(potentially infinitely) many combinations of the model parameters could all

yield identical data. In these cases, the parameters are not identifiable, since

a good fit to the data provides no guarantees that the estimated parameter

values are close to the true values. I discuss the shortcomings of MLE-based ap-

proaches for parameter inference especially with respect to their ability to de-

tect and diagnose identifiability. I then demonstrate that a Bayesian approach

to parameter estimation resolves this issue; by efficiently sampling posterior

distributions, we gain a direct diagnostic of identifiability. This approach

is demonstrated with several relevant applications including ligand binding

curves and dynamical systems.

In Chapter 3, I provide a deeper look at the scourge of parameter

identifiability by focusing on an emerging biophysical technique called single

molecule photobleaching. This experimental technique is useful for determin-

ing the stoichiometry of protein complexes. The data derived from the methods

are draws from a stochastic process and are used to inform conclusions regard-

ing arrangements and interactions of proteins. In this chapter, I demonstrate

that the analysis and interpretation of this data is non-trivial, since the under-

lying inference model can be nonidentifiable in certain experimental regimes.

To overcome these uncertainties, I lay out a rigorous probability model for

inference and parameter confidence when using this technique.
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In Chapter 4, I describe the use of nonparametric Bayesian inference,

which provides a flexible class of infinite dimensional probability distributions,

allowing us to circumvent the problems of model selection. In effect, we can use

nonparametric Bayes methods in order to extract structure from data instead

of assuming models beforehand. After describing theoretical aspects of non-

parametric Bayes, I demonstrate its utility with several diverse applications

in single molecule biophysics. I show that using a Dirichlet process mixture

model, we can analyze single ion channel dwell-times in order to discover the

number of biophysical states hidden in the data. I then show that a hierarchi-

cal Dirichlet process hidden Markov model can be used to analyze a variety

of single molecule time series, with applications to electrophysiological record-

ings, single molecule photobleaching, and single molecule FRET. Finally, I

show that with a hierarchical Dirichlet process aggregated Markov model, we

can analyze single ion channel time series without assuming a model, and we

can discover the hidden open and closed states in the data. These novel meth-

ods promise to bring a new level of rigor and power to the study of single

molecule biophysics.

In the Appendix, I provide an accessible introduction and tutorial on

Bayesian inference. Readers who are entirely unfamiliar with Bayesian meth-

ods may benefit from reading this appendix early on, as the description of the

methods is somewhat terse and technical within each chapter.
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Chapter 2

Determination of Parameter Identifiability in

Nonlinear Biophysical Models: A Bayesian

Approach

The majority of the text and figures presented here have been published

previously in the Journal of General Physiology :

Hines, K.E., T.R. Middendorf and R.W. Aldrich (2014). Determina-

tion of Parameter Identifiability in Nonlinear Biophysical Models: A Bayesian

Approach. Journal of General Physiology. 143(3): 401-416.

Co-author contributions: T.R. Middendorf assisted with developing

these results and R.W. Aldrich supervised the project.

Abstract A major goal of biophysics is to understand the physical

mechanisms of biological molecules and systems. Mechanistic models are eval-

uated based on their ability to explain carefully controlled experiments. By

fitting models to data, biophysical parameters that cannot be measured di-

rectly can be estimated from experimentation. However, it might be the case

that many different combinations of model parameters can explain the obser-

vations equally well. In these cases, the model parameters are not identifiable:

the experimentation has not provided sufficient constraining power to enable
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unique estimation of their true values. We demonstrate that this pitfall is

present even in simple biophysical models. We investigate the underlying

causes of parameter non-identifiability and discuss straightforward methods

for determining when parameters of simple models can be inferred accurately.

However, for models of even modest complexity, more general tools are re-

quired to diagnose parameter non-identifiability. We present a method based

in Bayesian inference that can be used to establish the reliability of parameter

estimates, as well as yield accurate quantification of parameter confidence.

2.1 Introduction

A major goal of biophysics is to understand the physical mechanisms

of biological molecules and systems. The general approach to rigorously eval-

uate mechanistic hypotheses involves comparison of measured data from well-

controlled experiments to the predictions of quantitative physical models. A

candidate model (and the mechanism which it implies) is rejected if it does not

quantitatively fit all available data. For models that agree with the data, the

fits provide estimates for the model parameters, which represent system prop-

erties of interest that cannot be measured directly, such as binding affinities,

cooperative interactions, kinetic rate constants, etc. An extensive literature

exists concerning methods for finding sets of parameter values that provide

the best fit of model to data (Jennrich and Ralston, 1979; Johnson and Faunt,

1992; Johnson, 2010), but the important issue of determining and characteriz-

ing the confidence of parameter estimates in models with several, usually non-
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independent, parameters is more challenging and less well developed. Here,

by way of examples from fairly simple and common biophysical models, we

consider two related issues: i) for a given model and a given type of data, are

the parameters of a model uniquely constrained by the measurements? and ii)

how confident can one be in the parameter values obtained by fitting a model

to data?

To illustrate the issues of confidence in parameter estimation we con-

sider ligand activation of the macromolecular receptor calmodulin (CaM). CaM

plays a central role in many biological signaling processes and has been stud-

ied extensively (Cheung et al. 1978; Cheung 1980; Hoeflich and Ikura 2002).

This protein has four non-identical EF-hand binding sites for calcium ions.

Upon activation by calcium, CaM can interact with over 300 known effector

proteins (Crivici and Ikura, 1995; Yap et al. 2000). Calcium binding data

for CaM are commonly analyzed using a four-site sequential binding model

(Figure 2.1A, top), in which the ligand binding events are quantified by the

macroscopic equilibrium constants K1, K2, K3 and K4 for the four binding

steps. Mechanistically these four parameters reflect intrinsic binding affinities

and potential cooperative interactions between the sites, as originally proposed

by Adair to describe cooperative oxygen binding to hemoglobin (Adair, 1925).

Figure 2.1A, bottom, adapted from Stefan et al., 2009, shows calcium binding

curves from several studies (Crouch and Klee, 1980; Porumb, 1994; Peersen

et al, 1997); Figure 2.1B shows the corresponding estimates for parameters

K1 through K4 reported by these groups, and those from three related studies
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(Burger et al., 1984, Linse et al., 1991, Haeich et al., 1981). Strikingly, while

the data from these groups are in good agreement, the parameter estimates

differ significantly: for some parameters, the reported estimates vary more

than 25-fold.

What underlies this large uncertainty in binding parameter estimates?

The problem may be intrinsic to data fitting, such that a given binding curve

is fit arbitrarily well by many combinations of parameter values, regardless of

data quality. Alternatively, it could be a consequence of noise in the data, in

which case more precise experimentation may place tighter constraints on the

parameter values. We investigated these possibilities using simulated data. A

synthetic binding curve with no added noise was generated using the binding

parameter estimates from a single study (Linse et al., 1991) (smooth curve in

Figure 2.1C). Systematic exploration of the parameter space of the sequential

binding model revealed that no single set of parameter values provides a clear

best fit to the synthetic data. Rather, many parameter sets, covering a wide

range of values for each parameter, fit the data with less than one percent

RMS deviation. (This value is a conservative threshold for identifying excel-

lent fits, since real binding measurements are unlikely to surpass this noise

criterion). Two representative excellent fits are shown in Figure 2.1C, and the

corresponding parameter values for these fits are shown in Figure 2.1D. Note

that the scale of the vertical axis in Figure 2.1D spans nine orders of mag-

nitude, indicating that parameter sets with very different apparent affinities

yield similar binding curves. For the set of points shown as squares in Figure
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Figure 2.1: Estimating the parameters of a four-site binding model. (A)
Calmodulin binding data from multiple experimental groups (adapted from
(Stefan et al., 2009)). Mi refers to CaM with i bound calcium ions. (B) Param-
eters obtained by fitting the sequential binding model in (A) to experimental
data from five groups. Parameters are from Linse et al., 1991 (squares), Haeich
et al., 1981 (rhombi), Porumb, 1994 (circles), Burger et al., 1984 (triangles),
Crouch and Klee, 1980 (inverted triangles). (C) Synthetic, noiseless binding
data (solid curve) calculated using parameters from (Linse et al., 1991). (D)
Two distinct parameter sets that yield excellent fits to the data. For parame-
ters shown as squares, all binding sites have nearly identical affinity, consistent
with weak cooperativity. The parameters shown as circles are consistent with
strong cooperative interactions between the binding sites. The binding curves
generated from these parameters are plotted in C as circles and squares.
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2.1D, the equilibrium constants K1-K4 are nearly equal. For the parameter set

shown as circles in Figure 2.1D, the apparent affinity for each binding event

is very different, consistent with large differences in binding affinity or strong

cooperative interactions between the sites. Comparison of the two fits shown

in Figure 2.1C indicates that even high-quality binding data (1 percent RMS

noise) lack the power to distinguish between mechanisms with very different

binding affinity and/or cooperativity. When fitting data, not only the best fit,

but also the uniqueness of the fit must be determined to understand the con-

fidence one can have in the estimates. Otherwise, the uncertainties in model

parameter values may be so large (as in Figure 2.1D) that they preclude even

qualitative insights into the mechanism of the process.

If fitting a model to data is to yield accurate and meaningful parameter

estimates, the complexity of the model must be commensurate with the con-

straining power of the data. We show that this requirement is often not met

when typical models are used to analyze common types of experimental data

such as binding curves and kinetic time series. We present multiple methods

for assessing the uniqueness of parameter estimates obtained from fitting ex-

perimental data. For some simple models that allow analytical solutions, we

describe a method for determining the maximum number of parameters that

can be meaningfully quantified by regression analysis. This work builds upon

previous investigations (Reich, 1974; Astrom and Bellman 1970; Straume and

Johnson 2010), and such methods are effective for simple models. However, any

biophysically realistic models of protein signaling and conformational change,
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such as ion channel gating, will not be tractable. Therefore, a general method

is needed for estimating parameters accurately regardless of model complexity.

To this end, we present a framework based in Bayesian inference that employs

Markov chain Monte Carlo (MCMC) sampling. By providing distributions of

parameter values consistent with the available data, this method yields accu-

rate estimates of model parameters (and their uncertainties) and can be used

to determine whether those estimates are unique. In addition, the method

possesses significant computational advantages over approaches that sample

error surfaces exhaustively.

2.2 Results

In the following sections, we explore the reliability of parameter es-

timates obtained by fitting various models to common types of biophysical

data. Experimental data is generally fitted using regression methods. The

theory for nonlinear regression assumes that there is a point in the parameter

space that yields a minimum local (though hopefully global) error between

model and data. Furthermore, it is assumed that the error contours surround-

ing this point are well approximated by ellipsoids (this geometry stems from

a quadratic error function) (Seber and Wild, 2003; Seber and Lee, 2003).

When these conditions hold, we have strong statistical guarantees that the

true parameter value is located within some bounded interval from our esti-

mated value. A variety of optimization methods can then be used to obtain

a best point estimate for the parameters and to construct confidence intervals
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defining the uncertainty in the parameters. For many models of biophysical

interest, however, multiple parameter combinations (often with very different

values) produce nearly identical observables. In these cases, the assumptions

of nonlinear regression theory do not hold, and we lose the statistical assur-

ance that our point estimates of the parameters are close to the true values.

We next employ simple example models to investigate when such issues arise

and to demonstrate that this problem may occur frequently in biophysical

investigations.

2.2.1 Two-site, three-parameter binding model: a case of struc-
tural non-identifiability

Consider a cooperative model of ligand binding to a receptor with two

inequivalent binding sites (Figure 2.2A). The microscopic association equi-

librium constants of the sites are denoted KI and KII , and an additional

cooperativity parameter (F) quantifies the degree to which binding events at

one site can enhance (or hinder) binding at the other site. Note there is only

one free parameter for cooperativity, due to the detailed balance constraint. A

simulated binding curve is shown in Figure 2.2B which was generated with pa-

rameters {KI , KII , F} = {500 µM−1, 500 µM−1, 1}. A second binding curve

is also shown, generated with parameters {KI , KII , F} = {997.5 µM−1, 2.5

µM−1, 100}. Though these curves were generated from very different parame-

ter values, they overlay exactly. How is it that multiple points in the parameter

space of this model can yield identical binding curves?
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Figure 2.2: Parameter estimation for a two-site cooperative binding model.
(A) Diagram of a model which assumes two binding sites with microscopic
association constants KI and KII, and cooperativity factor F. (B) Two param-
eter sets with very different values yield identical simulated binding curves.
Parameter set A: {KI, KII, F } = {500 µM−1, 500 µM−1, 1}; Parameter set
B: {KI, KII, F } = {997.5 µM−1, 2.5 µM−1, 100}. (C) Log-error surface of a
region of the F-KII parameter space. The curve generated from Parameters
A was used as a reference curve. Binding curves were calculated for various
points in the parameter space, and the total error between the two curves
was computed. Areas of lighter shading correspond to areas of less error.
(D) MCMC samples drawn from the joint posterior distribution of KI and F.
The curved structure of the posterior distribution indicates that the model
parameters are not identifiable using this binding data.
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We used the smooth curve in Figure 2.2B as simulated data (without

added noise) and explored the values of parameters F and KI systematically

(Figure 2.2C). For every point in this grid, the values of F and KI were fixed

and the third parameter (KII) was varied to generate the best fit to the ref-

erence curve using nonlinear least-squares regression (Levenberg, 1944; Mar-

quardt, 1963). The residual sum-squared-error between the model and the

data was then determined for each F, KI pair. This error surface is repre-

sented in Figure 2.2C, with lighter shading corresponding to lower total error.

No single combination of parameter values in this surface provides a best fit to

the reference curve. Rather, a vast contour through the parameter space yields

equally good fits to the synthetic data. The minimum error contour (lightest

color in Figure 2.2C) extends infinitely in both directions of the parameter

space, even as the total error approaches zero. The shape of this contour illus-

trates how the parameter values compensate systematically over wide ranges

to fit the data. (Note that the true value of KI (500 µM−1) is far to the right

of the plot shown at this scale.) An experimental scientist confronted with the

error surface in Figure 2.2C would reach several discouraging conclusions: i)

finding a good fit of the cooperative model to typical binding data provides no

guarantee that the inferred parameter values are close to the correct values; ii)

the range of parameter values consistent with an exact fit to an experimental

binding curve is infinite; and iii) more careful experimentation to reduce the

noise in the data will not improve matters.

Situations in which fitting a model to data does not yield unique and
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optimal parameter estimates is well-documented in the control theory litera-

ture (Bellman and Astrom, 1970; Cobelli and DiStefano III, 1980; Walter and

Pronzato, 1997). The parameters of the model in Figure 2.2 are not struc-

turally identifiable: there is not enough constraining power, even in noiseless

data, to enable a unique estimate of their true values. It is easy to imagine

that correlations between the numerous parameters in complex models could

yield non-unique fits to data. However, the results in Figure 2.2 illustrate that

interactions between the three parameters in a very simple model can be so

effective that fitting of high quality data provides little meaningful constraint

on the parameter values. How can we determine whether the parameters of a

model are structurally identifiable when constrained by a measurement?

2.2.2 Rank-deficient regression

When the experimental observables of a system can be expressed an-

alytically in terms of the model parameters, the data fitting problem can be

cast in closed form, and simple methods can be used to test for parameter

identifiability (Seber and Lee, 2003). Returning to the model of Figure 2.2A,

we define a parameter vector a with components a1 = KI , a2 = KII , and

a3 = FKIKII . If our observable signal (y) is the fraction of sites occupied by

ligand at concentration x, then

y(x) =
a1x+ a2x+ 2a3x

2

2(1 + a1x+ a2x+ a3x2)
. (2.1)
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If we can cast the observable as a linear system of the model parameters,

then we can simply use linear regression for parameter inference. Multiplying

both sides of (1) by the denominator of the right hand side linearizes the

parameters

2y + 2a1xy + 2a2xy + 2a3x
2y = a1x+ a2x+ 2a3x

2. (2.2)

We proceed to find â, an optimal estimate of the parameters, by min-

imizing the error between the model and the data. For our cost function,

S, we use the sum of the squared error between observations yi and model

predictions y(xi):

S =
n∑
i=1

(yi − y(xi))
2 . (2.3)

Substituting in the expression for y(xi) yields:

S =
n∑
i=1

(
a1xi(2yi − 1) + a2xi(2yi − 1) + 2a3x

2
i (yi − 1) + 2yi

)2
. (2.4)

The optimal estimate of the parameters is obtained by minimizing S.

The partial derivatives of S with respect to the components of the parameter

vector a are:
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∂S

∂a1
=

n∑
i=1

(a1(4xiyi − 2xi)
2 + a2(4xiyi − xi)2 + a3(4xiyi − 2xi)(2x

2
i yi − 2xi2)

+4yi(2xiyi − xi))
∂S

∂a2
=

n∑
i=1

(a1(4xiyi − 2xi)
2 + a2(4xiyi − xi)2 + a3(4xiyi − 2xi)(2x

2
i yi − 2x2i )

+4yi(2xiyi − xi))
∂S

∂a3
=

n∑
i=1

(a1(4xiyi − 2xi)(2x
2
i yi − 2x2i ) + a2(4xiyi − 2xi(2x

2
i yi − 2x2i ))

+a3(2(2x2i yi − 2x2i )) + 4yi(2xiyi − xi)).

Setting these equal to zero yields the estimate â and results in a linear

system in ~a,

Xâ = ~R, (2.5)

where âT = {â1, â2, â3} andRT = {
∑n

i=1 4yi(2xiyi−xi),
∑n

i=1 4yi(2xiyi−

xi),
∑n

i=1 4yi(2xiyi − xi)}. The design matrix X is ∑
(4xiyi − 2xi)

2
∑

(4xiyi − 2xi)
2

∑
(4xiyi − 2xi)(2x

2
i yi − 2xi)∑

(4xiyi − 2xi)
2

∑
(4xiyi − 2xi)

2
∑

(4xiyi − 2xi)(2x
2
i yi − 2x2i )∑

(4xiyi − 2xi)(2x
2
i yi − 2xi)

∑
(4xiyi − 2xi)(2x

2
i yi − 2xi)

∑
(4x2i yi − 2x2i )

2

 .

(2.6)

The solution of this linear system should yield â, the optimal point

estimate of the parameters given the data. However, the first and second

columns of the design matrix, (equation 2.6), are identical (and therefore lin-

early dependent). In general, the rank of a matrix is the number of linearly

independent rows (or columns) and a matrix whose rank is less than the total
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number of rows or columns is called rank-deficient. A rank-deficient matrix

defines a linear system with an infinite number of solutions (Seber and Lee,

2003). In this example model, the design matrix is rank-deficient and there-

fore equation 2.6 specifies not a point estimate, but rather all combinations of

the parameters that are optimal fits to the data. By indicating that a unique

estimate of the model parameters is not possible, this test of the design matrix

for rank-deficiency is effectively a structural identifiability test. This method

of assessing parameter identifiability is similar to other proposed methods that

employ sensitivity matrices or Fisher information (Cobelli and DiStefano III,

1980), and can be generally applied to any model where the observable can be

expressed as a linear system of the model parameters.

2.2.3 Two-site, two-parameter binding model: a case of practical
non-identifiability

Demonstrating that a systems design matrix is full-rank is a necessary,

but not sufficient, condition for ensuring that the models parameters can be

uniquely estimated from experimental data (Jacquez and Greif, 1985; Faller

et al., 2003; Raue et al., 2009). Consider the model depicted in Figure 2.3A

for a two-site receptor. This sequential binding model (which is a reduced

version of the four-site model in Figure 2.1A) assumes that the two singly-

occupied binding configurations are equivalent, and has only two macroscopic

affinity parameters, which quantify the first and second binding steps. It is

straightforward to show that the design matrix for the model in Figure 2.3A

is full-rank. Therefore, we might be tempted to conclude that the parameters
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of this model can be inferred uniquely from binding data.

Figure 2.3B shows two simulated data sets that were calculated using

the model in Figure 2.3A with distinct parameterizations. For parameter set

A, K1 = K2 = 200 µM−1. For parameter set B, K1 = 100 µM−1, K2 = 1000

µM−1. To one of the curves (shown as circles), Gaussian noise of 2.5 percent

variance has been added to mimic the variability of experimental data. Though

the curves were generated from very different parameter values, they produce

similar curves (apart from the added noise). The error surface (Figure 2.3C)

was computed as the difference between a noiseless reference curve (the solid

curve in panel B) and the model predictions for a large region of the parameter

space of the model. The error contours are curved, and thus, as for the models

in Figs. 2.1 and 2.2, parameter compensations can occur so that disparate

parameter values yield the same error. However, unlike those in Figure 2.2C,

the error contours in Figure 2.3C are bounded, with the lowest-error contours

approaching perfect ellipses. Thus, for data with infinite signal-to-noise ratio

(no added noise), the two-site, two-parameter sequential model is uniquely

identifiable, and fitting of such data would yield accurate parameter estimates.

However, the inevitable presence of experimental noise in real data (even at

low levels of 2.5 percent variance) would prevent a unique determination of the

parameters of this model. Previous authors have documented this phenomenon

(Jacquez and Greif, 1985; Vajda et al., 1989; Raue et al., 2009) and distinguish

between structural non-identifiability (as in Figure 2.2), in which even noiseless

data cannot yield unique parameter estimates, and practical non-identifiability
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Simulated binding curves for two different parameter sets. Parameter set A is
consistent with weak cooperativity between the binding sites (K1 = K2 = 200
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= 100 µM−1, K2 = 1000 µM−1). Gaussian noise was added to the curve for
parameter set B to mimic experimental variability. Though these parameter
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nearly identical observables. (C) Log-error surface in K1 - K2 parameter space
with respect to the noiseless data curve in B. Large ranges of parameter values
produce very similar binding curves. (D) MCMC samples of joint posterior
distribution of the parameters when constrained by the noisy curve in B.
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(as in Figure 2.3), in which the parameters of a model are identifiable only if

data is available with sufficient signal-to-noise.

These examples demonstrate the dangers one incurs when only point

estimates or best-fits are considered. It is of vital importance to establish

not only the best fit to the data, but the full range of parameters that yield

good fits. The typical approach when fitting data to nonlinear models relies

on maximum likelihood (ML) theory to estimate parameters (Cramer, 1946).

The maximum likelihood estimate (MLE) of a parameter is the point in pa-

rameter space that yields the optimum of the likelihood of observing the data

given a particular value of the parameters. Asymptotically, the MLE is an

efficient and unbiased estimate of a parameter. As an example, if the data are

assumed to be normally distributed, then minimizing the sum-squared-error

between model and data provides the MLE (Seber and Wild, 2003). Once an

optimal point estimate is found, ML theory prescribes that confidence regions

can be calculated by identifying the range of parameters that yield likelihoods

consistent with the noise in the data (see Colquhoun et al., 2003 for a descrip-

tion of properties of ML estimators for common biophysical systems). For low

dimensional models, a grid of the entire likelihood surface might be computed

(as in Figs. 2.2 and 2.3C), but this becomes infeasible for larger models (see

Discussion). Due to this constraint, it is typically assumed that the likelihood

surface is approximately quadratic around the MLE. Therefore, efficient algo-

rithms can be used to identify the MLE and to numerically approximate the

local curvature of the likelihood in order to construct a confidence ellipsoid
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around the MLE. In cases of non-identifiability, this elliptical approximation

around the MLE can be quite inaccurate. Take, for example, the likelihood

surface of the two parameter binding model when constrained by the noise-

less binding curve in Figure 2.3C (K1 = 100 µM−1, K2 = 1000 µM−1). The

maximum likelihood estimate would indeed be the true parameter values, and

the lowest error contour surrounding this point would be well approximated

by an ellipse (lightest color contour in C). However, in the face of realistic

experimental noise, our estimate of parameter confidence must take into ac-

count all parameter combinations that are consistent with any particular level

of error. Such error contours are no longer elliptical, but are curved (due to

practical non-identifiability). If we use a quadratic likelihood approximation

around the MLE in Figure 2.3C, we would vastly underestimate our parameter

uncertainty. It might be the case that the likelihood surface near the MLE

is relatively flat in the direction of one (or more) of the parameters and this

would suggest non-identifiability. However, we will be unable to distinguish

between structural and practical non-identifiability without directly assessing

all the regions of parameter space that yield high likelihood. Since exhaustive

exploration of parameter space will not be feasible for most realistic mod-

els (see Discussion), we next describe a computationally efficient method of

exploring parameter spaces.
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2.2.4 Bayesian Inference

The previous section demonstrated that in the face of realistic experi-

mental noise, analysis of the design matrix does not provide a sufficient con-

dition for establishing whether the parameters of a model are uniquely con-

strained by the available data. Therefore, a more general method is needed

for determining whether the parameters of a model are both structurally and

practically identifiable. In Figs. 2.2C and 2.3C, we explored the entirety of

parameter spaces to identify which regions led to low error between model

predictions and data. If the parameter values in best agreement with the

data are confined to a small region of the parameter space, then the model

parameters are identifiable. This approach moves us away from the idea of

accepting a single best fit to the data, and instead identifies all regions of the

parameter space that are in agreement with the observations. In the language

of Bayesian inference, what we seek is called the posterior distribution of the

parameters: a probability distribution on the parameter space that assigns

higher probability to areas that are in better agreement with the observations.

In the following, we demonstrate that a Bayesian approach provides accurate

estimates of model parameters and their uncertainty and provides a direct and

general method of diagnosing parameter identifiability.

Assume that we have gathered N observations, yN , in order to infer

the true values of m parameters {θ1, θ2, ..., θm}, comprising the vector θ. In

Bayesian terms, we seek to know p(θ|yN), the posterior probability distribution

of the parameters, which is the probability (over the entire parameter space)
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of a particular value of θ having given rise to the observations yN . To estimate

this distribution, we apply Bayes rule,

p(θ|yN) ∝ p(yN |θ)p(θ) (2.7)

which states that the posterior distribution of the parameters is propor-

tional to the likelihood of observing the data, p(yN |θ), multiplied by the prior

distribution of the parameters, p(θ). If the observations yi are independent,

then the total posterior probability is the product of the posterior probability

of each observation,

p(θ|yN) ∝
N∏
i=1

p(yi|θ)p(θ). (2.8)

For a particular model and some observed data, it is straightforward to

compute p(θ|yN). The structure of the posterior distribution indicates whether

the region of highest posterior probability (the best fits) is localized or extends

over a significant fraction of the parameter space, and is thus an indicator of

parameter identifiability.

As with the direct calculation of error surfaces (Figs. 2.2C and 2.3C),

computing posterior distributions over an entire parameter space by brute

force is possible for low-dimensional problems, but quickly becomes infeasible

for even modestly sized models. Fortunately, posterior distributions can be

computed efficiently using an existing numerical method from the statistics
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literature called Markov chain Monte Carlo (MCMC) sampling. The theory

of MCMC is described elsewhere (Robert and Casella, 2010; Tierney, 1994)

and we provide only a brief description. Consider a high-dimensional system

for which the brute force computation of posterior probabilities over the entire

parameter space is not practical. If we can draw a finite number of indepen-

dent and identically distributed (iid) samples from the corresponding poste-

rior distribution, then the properties of this finite sample will approximate

the properties of the posterior. To generate these iid samples, we simulate a

Markov chain whose limiting distribution is the posterior distribution of in-

terest. Generating a Markov chain with a desired limiting distribution can be

achieved by a number of methods. Here we rely on one of the simplest-the

Metropolis Random Walk algorithm (Metropolis et al., 1953). For iteration i

of the algorithm, the Markov chain is in position θi in the parameter space. A

potential transition to a new point, θ̃, is generated by a random walk accord-

ing to the following rules. The posterior probability of this potential point,

p(θ̃|yN), is computed and compared to the posterior probability of the current

position of the chain, p(θi|yN). If the proposal point has greater posterior

probability than the current point, then it is accepted as a sample from the

posterior distribution. If it has lower posterior probability, then it is rejected

with probability proportional to the decrease in posterior probability. Thus,

transitions of the Markov chain are accepted with probability α, where
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α = min

(
1,
p(θ̃|yN)

p(θi|yN)

)
. (2.9)

This rule allows the chain to move efficiently toward areas of high pos-

terior probability but also provides a mechanism to move away from local

minima in the posterior distribution by allowing transitions to regions of lower

posterior probability. The Markov chain produced by this algorithm explores

the parameter space in proportion to the posterior probability and provides

a finite number of iid samples from the posterior distribution. This method

can be used to efficiently approximate posterior distributions of arbitrarily

high dimension. The following section illustrates the use of MCMC to assess

parameter identifiability for some common biophysical models.

2.2.5 Applications

A common form of parameter inference involves fitting a candidate

model to observations drawn from a controlled experiment. Though the Bayesian

framework presented here is general, we focus primarily on curve-fitting appli-

cations due to their prevalence in experimental science. We assume that each

observation, yi, is a function of some independent variables, xi, and that the

model of interest defines the function, f(xi, θ), which depends on the model

parameters, θ. We seek to identify the values of θ that lead to the best agree-

ment between yN and f(xN , θ).

Our probability model considers that each observation yi is the result
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of f(xi, θ) plus some experimental noise, which is assumed to be normally

distributed (although this assumption is not necessary). Each observation is

drawn from a normal distribution N(m,σ2) whose mean, m, is equal to the

model prediction, f(xi, θ), for some particular values of the parameters, and

whose variance, σ2, is due to noise of any kind:

yi ∼ N(f(xi, θ), σ
2). (2.10)

The posterior probability distribution then becomes,

p(θ|yN) ∝
∏
i

N(yi|f(xi, θ), σ
2)p(θ). (2.11)

In the following applications, the prior distribution, p(θ), is a flat dis-

tribution (a truncated uniform distribution). While this form of the prior

works well for the simulated datasets we use for illustration, it is in general

an improper prior and more thoughtful prior distributions should be used in

practice. By using MCMC, we generate a Markov chain that preferentially

explores regions of the parameter space that lead to high posterior probability

(i.e., the best fits to the data).

2.2.6 Binding Models

We showed earlier, using algebraic techniques, that the three-parameter

binding model of Figure 2.2A is not structurally identifiable. Consistent with
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this finding, the error surface (Figure 2.2C) revealed an unbounded zero-error

contour through the parameter space of this model. MCMC samples from

the joint posterior distribution of F and KI (Figure 2.2D) show that this

distribution is highly curved, indicating that a large range of values of these

parameters is in good agreement with the data. The MCMC approach leads

to the same conclusion as the error surface, but with a much-improved com-

putational efficiency and potential for scalability (see Discussion).

A thorough mapping of the error surface for the two parameter model

of Figure 2.3A, shown in Figure 2.3C, revealed that this model is not practi-

cally identifiable. While unique best fit parameters can be obtained in theory,

this is not possible for data with a realistic signal-to-noise ratio. Consistent

with this observation, the MCMC approximation to the posterior distribution

for this model (Figure 2.3D) revealed that the two parameters of the model

can compensate for one another to produce good fits to the data. In this

case, the noisy data of Figure 2.3 is used to constrain the model parameters

for MCMC. When faced with this level of noise in the data, parameters are

able to compensate, as revealed by the curved structure of the posterior dis-

tribution. However, in contrast to situations of structural non-identifiability

(for which it is impossible to constrain parameter estimates usefully), we would

conclude that the true values of the parameter lie within a certain bounded re-

gion (by constructing a 95% credible interval), when constrained by this data:

parameter K1 is likely between 50 and 250 µM−1, and parameter K2 is likely

between 200 and 2000 µM−1. While this level of confidence is a considerable
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improvement over the situation of Figure 2.2, these large uncertainties may

still prevent us from achieving a useful level of mechanistic insight. For exam-

ple, there are posterior samples corresponding to {KI,KII} = {100, 1000}

and {250, 250}, each of which is a valid explanation of the data. Therefore,

while we can put reasonable bounds on parameter estimates, we may not be

able to draw even qualitative conclusions regarding mechanism.

2.2.7 Kinetic Models

Many chemical and biochemical systems can be described by kinetic

models (such as in Figs. 2.4A and 2.6A) comprising systems of coupled differ-

ential equations. Typical experimental investigations of these systems involve

monitoring the time course of the state populations in response to a perturba-

tion to determine the transition rate constants. Numerous methods have been

proposed to assess parameter identifiability in these so-called compartmen-

tal systems (Cobelli and DiStefano III, 1980; Godfrey et al., 1982), including

Laplace transforms (Walter and Pronzato, 1997), and information matrices

(Bellman and Astrom, 1970). However, the practical non-identifiability of

model parameters for many biological systems may not be detected by matrix

methods (Raue et al., 2009). An alternative approach to assess identifiability

involves computing low-dimensional error surfaces in the relevant parameter

space directly (Johnson et al., 2009b, Johnson et al., 2009a, Raue et al., 2009).

In the following, we use the more efficient Bayesian framework to determine

whether candidate kinetic models are uniquely constrained by a given observ-
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able.

The kinetic scheme of Figure 2.4A comprises three states connected

sequentially. Suppose that our observable signal is the population of state

B over time (Figure 2.4B) with additional Gaussian noise. The independent

variable xi represents time and the model prediction, f(xi, θ), is the solution

to the system of differential equations represented by the diagram in Figure

2.4A with the parameter set θ. We use these observations to estimate the

posterior distribution of the model parameters by generating 50,000 MCMC

samples. The structure of the posterior distribution will indicate whether the

four transition rates {a, b, r, s} are uniquely constrained by this observable.

At the top of Figure 2.4C, the trajectory of one dimension of the Markov

chain is plotted (corresponding to parameter a). The thin trace represents the

marginal likelihood throughout the course of the simulation. The marginal

likelihood, which quantifies the total goodness of fit between the model and

the data, starts at a low value, since the simulation is initialized at an arbitrary

point in parameter space that is likely a poor fit to the data. As the Markov

chain evolves, the marginal likelihood improves and eventually plateaus af-

ter approximately 100 iterations; this initial period is termed the burn-in and

these samples are discarded. After this convergence, the Markov chain has

reached stationarity and all subsequent transitions provide iid samples from

the posterior distribution (see Discussion). The estimate of parameter a (thick

trace) moves in large jumps initially but eventually settles near the true value

of 15. The trajectories of each of the other parameters are also plotted for
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Figure 2.4: Application of MCMC to dynamical systems. (A) A kinetic model
with three states and four free parameters. (B) Time course of the population
of state B. (C) MCMC results when inferring the parameter values from the
data in (B). Top panel shows one dimension of the Markov chain (correspond-
ing to parameter a) throughout the course of the simulation (thick trace).
Thin trace is the corresponding marginal likelihood. Lower traces are the cor-
responding trajectories for the remaining parameters. (D) Histograms of the
marginal posterior distribution of each parameter shown along with the true
values (vertical lines) and the corresponding 95% credible interval (horizontal
line segment).
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the first 1,000 iterations in panel C. In each case, the chain explores a small

region of the parameter space but does not stray far from the optimal esti-

mate, especially after the Markov chain converges. Each of these transitions

represent an iid sample from the posterior distribution and is a valid estimate

of the parameter. Therefore, the transitions of the Markov chain, taken in

aggregate, approximate the total uncertainty in each parameter (called the

marginal posterior distributions). Panel D shows histograms of the estimate

of each parameter (after the burn-in) as well as the true values (vertical lines).

Such an approximation of the marginal posterior distributions can be used to

derive credible intervals for each parameter. While the peaks of the posterior

distributions do not all coincide with the true parameter values, 95% credi-

ble intervals (horizontal line segments below the histograms) contain the true

values.

Since MCMC samples are drawn from the total joint posterior distri-

bution of the parameters, they can be used to assess any pair-wise (or higher

order, if desired) correlations between the parameters. Similar to Figures 2.2

and 2.3 D, pair-wise joint posterior distributions are shown in Figure 2.5, using

the same MCMC samples from Figure 2.4C. The density of samples is used to

generate a map such that areas of lighter shading correspond to areas of higher

posterior probability. In this way, the four-dimensional posterior distribution

of this model is projected into each two-dimensional subspace. The ensemble

of good fits to the data is confined to small regions of the parameter space

which contain the true parameter values, and therefore the parameters of this
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Figure 2.5: MCMC can be used to assess parameter correlations. The MCMC
trajectories from Figure 2.4C were used to visualize all the pairwise correla-
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used to generate maps where areas of lighter shading correspond to higher
posterior probability. In contrast to Figures 2.2 and 2.3 D, the joint posterior
distributions of these model parameters are approximately elliptical, indicat-
ing that the optimal estimates of the model parameters are contained in a
small, bounded region of the parameter space.

47



model are identifiable.

As a counter example, consider the more complex model of Figure 2.6A,

which has five states and eight free parameters. In this case, assume that the

observable is the combined populations of states D and E (Figure 2.6B) with

additional Gaussian noise. The panels in Figure 2.6C show 100,000 samples

from the resulting MCMC trajectories for each of the eight parameters. At

top left, one dimension of the Markov chain (corresponding to parameter a)

is shown along with the marginal likelihood (thin trace). The portions of the

trajectories plotted in panel C after the marginal likelihood settles represent

excellent fits to the data. In nearly every case, a large range of values is

sampled, all of which yield comparable marginal likelihood, meaning that they

provide excellent fits to the data and can be considered valid estimates. This

unbounded exploration of the parameters demonstrates that these parameters

are not identifiable when constrained by this data.

2.3 Discussion

2.3.1 Parameter identifiability and model selection

The work described here was motivated by the striking observation

that typical binding data place very weak constraints on the magnitudes of

affinity parameters for multi-site receptors. We showed that many parameter

sets, with affinity values varying by over four orders of magnitude for each

of the steps in a sequential binding model for calmodulin, produced binding

curves differing by less than 1% RMS (Fig 2.1). Even if binding data could be
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Figure 2.6: MCMC can detect non-identifiable models. (A) A five-state model
with eight free parameters. (B) Time course of the combined populations of
states D and E with parameters {a, b, r, s, u, v, j, k} = {3, 3, 5, 10, 9, 9, 20, 4}
(values in s−1). (C) Result of using MCMC to infer parameter values. At top
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the corresponding marginal likelihood. The MCMC trajectories of the other
model parameters are also shown. Since the marginal likelihood stabilizes, but
most of the parameter estimates do not, this model is not identifiable when
constrained by this measurement.
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obtained with this low noise level, the enormous uncertainties in the derived

parameter estimates severely limit the usefulness of this data for developing

a quantitative model for calcium activation of CaM. Parameter estimates are

not unique even for simple two-site binding models comprising only two or

three parameters (Figs. 2.2 and 2.3). Similar problems affect parameter esti-

mation for dynamical models used to analyze biochemical kinetic data (Figure

2.4). When model parameters are not identifiable, one has little confidence

that estimated values are close to the true values. For some model/data com-

binations, the data are fit arbitrarily well by many combinations of parameter

values, and the uncertainties in the model parameter estimates are unbounded,

even for noiseless data. These systems are structurally non-identifiable: the

model contains more parameters than can be supported even by perfect data

(Bellman and Astrom, 1970; Cobelli and DiStefano III, 1980; Walter and

Pronzato, 1997). A structurally non-identifiable system is analogous to an

under-determined system of algebraic equations, which has an infinite number

of solutions.

Structural non-identifiability can often be detected using algebraic meth-

ods, as in our demonstration that the design matrix for the two-site cooperative

binding model in Figure 2.2 is rank-deficient. Identifiability analysis indicates

that this model is over-parameterized: we are attempting to extract three

model parameters (F , KI , and KII) from curve fitting, whereas the rank of

the design matrix for this system, which specifies the maximum number of

parameters that can be quantified by fitting ideal (i.e., noiseless) total binding
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data, is two. The parameterization of the cooperative model is designed to

address two fundamental questions about a receptor with two binding sites:

i) are the site affinities unequal (i.e., is KI not equal to KII?), and ii) does

binding at one site influence binding at the other site (i.e., is F not equal to

1?). Since it requires three parameters to quantify these properties, it is not

possible to extract site affinities and cooperative interactions from this single

type of experiment. Meaningful regression analysis of these data with this

model requires a simpler parametrization than that in equation 2.1, such as

y(x) =
b1x+ 2b2x

2

2(1 + b1x+ b2x2)
. (2.12)

One could then make the simplifying assumption that the binding site affinities

are equal, and define the parameters as {b1, b2} = {2K,FK2}, where KI =

KII = K. Alternatively, one could assume that the sites do not interact

cooperatively, and define the parameters as {b1, b2} = {KI + KII , KIKII}. If

both of these options were deemed unsatisfactory, then other types of data

would need to be recorded. A new round of structural identifiability analysis

would then indicate whether three parameters could be extracted from fitting

the enhanced data set. This example illustrates how structural identifiability

analysis can provide an upper limit on what can be learned about a system

through experimentation. It is necessary that the parameters of a model are

structurally identifiable with respect to a given type of data for inference to

even be possible. However, the uncertainties in the parameters estimated by
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regression analysis of such a system might still be unacceptably large. For these

practically non-identifiable cases, the uncertainty in parameter values is linked

to the amount of noise in the data, such that meaningful parameter estimates

are obtained only if the noise amplitude is sufficiently small (Jacquez and

Greif, 1985; Faller et al., 2003; Raue et al., 2009). Establishing that a system

is practically non-identifiable is inherently subjective, because the acceptable

parameter uncertainty must be weighed against the difficulty (or impossibility)

of improving the signal-to-noise ratio of the data to a specified level. A useful

approach, which we have followed here, is to determine by simulation the

precision in parameter estimates that is required for gaining useful mechanistic

insight into the system under study. If this precision requires data with a

signal-to-noise ratio that is not achievable in practice, then the parameters are

practically non-identifiable.

Using the algebraic approach described here, it is easily shown that

the parameters of the four-site sequential model (Figure 2.1A) are structurally

identifiable (i.e., the associated design matrix is full-rank). However, the sim-

ulations in Figure 2.1 indicate that synthetic binding data with extremely

low (1% RMS) noise are not sufficient to constrain the values of the affinity

parameters K1-K4 to within less than four orders of magnitude. Thus, the

four-site model parameters are practically non-identifiable when constrained

by this type of data. The large parameter uncertainties prevent even qualita-

tive insights about cooperative interactions in CaM.

For the examples in Figs. 2.1-2.6, we explored the uniqueness of param-
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eter estimation by fitting an assumed model to data. However, in real-world

experimental investigations, the correct model is usually not known. There

are often several different competing schemes for describing a given biophys-

ical phenomenon, and thus identifying a satisfactory model is an important

aspect of the overall modeling process. While there is no way to confirm a

model structure definitively, unsuccessful models can be eliminated from con-

sideration by their inability to fit the available data for any set of parameters.

Since models and parameters are tested simultaneously, the MCMC method

for diagnosing parameter non-identifiability may be also be useful for model

selection (Siekmann et al., 2012). When the available data lacks the power

to constrain the parameters of a model, it is likely that many other models

of comparable complexity will also easily fit that data. Therefore, diagnosing

identifiability comes as a first step in the model selection process whereby po-

tential models are discarded from consideration if they cannot be constrained

by the data. Detecting when model parameters are not identifiable can indi-

cate situations in which model selection is also compromised.

2.3.2 Relationship to previous work

The strong inter-relationships between experimental design, model se-

lection, and parameter estimation have been rediscovered in many fields, in-

cluding econometrics (Koopmans, 1949; Rothenberg, 1971), process industries

(Gustavsson, 1975;Chappell and Godfrey, 1992), systems and control engineer-

ing (Eykhoff, 1964; Lee, R.C.K., 1964), and, more recently, systems biology
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(Audoly et al., 2001; Chis et al., 2011). These ideas have been rigorously

systematized into a unified discipline called system identification (Eykhoff,

1974; Ljung, 1987; Goodwin and Payne, 1977; Pronzato and Walter, 1997).

The parameter identifiability aspect of system identification has been explored

extensively in the control theory literature (Astrom and Bellman 1970; Gre-

wal and Glover, 1974; Cobelli and DiStefano III, 1980). Recently, there has

been a surge of interest in questions of parameter identifiability for models

of large biological systems, such as genetic, metabolic, biochemical, and eco-

logical networks, and signal transduction, cell cycle, and pharmacodynamic

pathways (Audoly et al., 2001; Cheung et al., 2013; Chis et al., 2011; Hengle

et al., 2007). For these complex, interconnected systems, the parameter com-

pensations that result in non-identifiability are possible because of the large

number of parameters required to model them.

There is a large literature on fitting binding curves of single- and multi-

site receptors using models such as the Hill model and the Adair model (Hill,

1913; Adair, 1925; Klotz, 1997; Wyman and Gill, 1990; Forsen and Linse,

1999). However, there has been relatively little treatment of identifiability for

simple biochemical systems (Hines, 2013; Raue et al., 2009; Johnson et al,

2009a; Bruno et al., 2005; Kienker, 1989). We show here that the parameters

of even extremely simple models are often not identifiable, suggesting that

this problem may be more widespread than is generally appreciated. Param-

eter non-identifiability in biochemical systems was investigated by J.G. Reich

and colleagues in the 1970s (Reich, 1974, Reich et al., 1974a, Reich et al.,

54



1974b, Reich and Zinke, 1974). In this work, the authors address difficulties

when analyzing ligand binding data as well as kinetic data. They proposed

methods of calculating parameter sensitivity to detect redundant parameters

(non-identifiability) and use these methods to compare various binding models

(such as those shown in Figure 1) to quantify the information content in a bind-

ing curve. Their work predates modern computing power and the widespread

use of efficient sampling algorithms such as MCMC.

Although we have focused on curve-fitting applications, the MCMC

method can be applied to any model for which posterior probabilities can

be calculated. For example, stochastic process models are commonly used

for modeling the dynamics of molecules. Markov Models and Hidden Markov

Models have been used to understand the conformational dynamics of ion chan-

nels (Qin et al., 1997), molecular motors (Mullner et al., 2010), and ligand-

binding proteins (Stigler and Rief, 2012). In these settings, the stochastic

properties of single molecule time series are used to constrain model param-

eters (transition rates between states). The model parameters are estimated

by maximizing the likelihood of the data (or the posterior probability). Com-

monly, a point estimate of the parameters of a candidate model is calculated

(Rabiner, 1989), but such an approach does not indicate whether these pa-

rameters are uniquely constrained by a particular time series. In contrast,

MCMC samples the full posterior distributions and thus provides an indica-

tion of non-identifiability. This approach has been applied to the study of ion

channel gating (Siekmann et al., 2012) and may become a powerful method
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for developing useful models of molecular processes.

2.3.3 Computational advantages of MCMC

The Bayesian framework presented here has clear advantages over alter-

native methods of diagnosing parameter identifiability. One approach might

be to examine the sensitivity of the fit to changes in the parameters, using a

variety of matrix based methods. We showed that this approach can only be

applied in special cases and can even misleadingly suggest reasonable parame-

ter estimates in the presence of realistic experimental noise. It is necessary to

directly explore the full range of the parameter space that leads to good agree-

ment with the data. Therefore, an alternative approach might be to directly

compute the error between the data and model for an entire parameter space.

This approach works well for simple problems, but is not feasible for large

models. For a K-dimensional model, computation of N points for each param-

eter requires O(NK) error calculations (here the notation O(f(N,K)) specifies

that as a function of N and K, the number of computations is on the order of

f(N,K)). Obviously this exponential explosion makes larger models impracti-

cal. An alternative is to consider just the pair-wise parameter correlations for

all model parameters and compute the total error. This approach was taken in

Figs. 2.2C and 2.3C and has been employed previously (Johnson et al., 2009b,

Johnson et al., 2009a). This method is limited, since errors are calculated

on a large joint-error-surface, and therefore computational effort is wasted in

regions of parameter space that yield poor fits to the data. In addition each
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total-error computation involves finding the best-fit point of the other param-

eters and thus entails O(N2K2) repetitions of some optimization algorithm,

which itself might involve many iterations to reach convergence. In contrast,

MCMC focuses computational effort in the region of parameter space that is

relevant to the data. Further, posterior estimation requires only O(NK) repe-

titions of a simple calculation of posterior probability. Such Bayesian methods

have recently been embraced by the systems biology community, where infer-

ence is routinely conducted on models containing more than 70 free parameters

(Eydgahi et al., 2013; Klinke, 2009; Battogtokh et al., 2002). Using MCMC to

sample posterior distributions yields not only accurate parameter estimates in

high dimensional spaces, but also provides information regarding identifiability

and nonlinear parameter correlations. Our MCMC implementations use the

Metropolis-Hastings algorithm, which is conceptually simple, but is not opti-

mal for high-dimensional problems. Fortunately, more sophisticated MCMC

algorithms have been developed (Neal, 2010; Girolami and Calderhead, 2011).

We briefly mention some of the practical considerations that must be

noted when using MCMC to estimate posterior distributions. Figure 2.4C

shows the parameter trajectories of MCMC samples from an identifiable model.

Each of the parameters are initialized at an arbitrary value and these trajec-

tories visualize how parameter estimates move toward regions of high poste-

rior probability. Once these large movements of the parameters cease, the

chain makes transitions only in proportion to the posterior probability and

the Markov chain is said to have reached stationarity (or converged). After
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convergence, all subsequent transitions of the chain produce iid samples from

the posterior and can be used for parameter estimation. The iterations preced-

ing convergence are termed the burn-in period and these values are discarded.

The MCMC samples visualized in Figs. 2.2D, 2.3D, the histograms of Figure

2.4, and Figure 2.5 have excluded the burn-in samples. It is important to de-

termine when the Markov chain has reached stationarity and many methods

can be used. Most simply, one could assess convergence by visual inspection:

the trajectories in Figure 2.4C seem to have converged by 200 iterations. More

rigorous methods are desirable and many have been developed; we point the

reader to (Gelman and Rubin, 1992; Geweke, 1992). We also direct the reader

to (Gilks et al., 1996) for a discussion of chain mixing efficiency and the ef-

fect on burn-in time. For non-specialists and those interested in implementing

MCMC sampling, there are two excellent introductory handbooks (Brooks

et al., 2011; Gilks et al., 1996b) that provide practical advice and guidance,

and include numerous case-studies of MCMC applied in diverse fields such as

epidemiology, genetics, archaeology, ecology, and image analysis.

2.3.4 Parameter identifiability and experimental design

The tools described here for diagnosing parameter identifiability can

be a useful component of the experimental design process. Figures 2.4 and

2.6 present potential signals that might be used to constrain different kinetic

schemes. While previous work has addressed model discrimination with macro-

scopic kinetic time series (Celentano and Hawkes, 2005), a Bayesian approach
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provides a direct assessment of identifiability. By sampling the posterior distri-

bution using MCMC, we showed that the model with four parameters (Figure

2.4) is uniquely constrained by the data. Conversely, the model with eight

parameters (Figure 2.6) is non-identifiable when constrained by the data, and

inferences about the properties of this model would be meaningless. In the

latter case, we may reject the initial model in favor of one with fewer param-

eters, although the parameters of the simpler model may lack the required

mechanistic significance. Alternatively, if this model is motivated by spe-

cific phenomenological considerations, then we may be resistant to reject it.

To derive meaningful mechanistic conclusions from this system we must then

redirect our experimental efforts in one of three ways: i) by performing the

same experiment, but collecting data with sufficiently higher signal-to-noise

ratio (in the case of practical non-identifiability), ii) by collecting other types

of data using existing approaches, or iii) by devising novel experiments that

generate observable signals with greater constraining power.

Many examples exist to illustrate the power that new types of data

bring to our ability to quantitatively model biophysical phenomena. For ex-

ample, it is particularly difficult to differentiate binding events from confor-

mational changes in ligand-gated ion channels when only macroscopic ionic

current measurements are available (Colquhoun, 1998). Recently, the Ben-

ndorf group has pioneered an approach in which channel opening is measured

electrophysiologically, while ligand-binding events are detected simultaneously

by fluorescence methods (Kusch et al., 2011). A second example is the role
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that single channel recording has had on the development of mechanistic mod-

els of ion channel gating. For example, we demonstrated that the parameters

of the model in Figure 2.6 are non-identifiable when constrained by macro-

scopic current relaxations. However, single channel recordings can be used

to constrain models of this complexity (Colquhoun and Sakmann, 1985; Sak-

mann and Neher, 1995). Another example is the transformative role of gating

current measurements in elucidating mechanisms in voltage-gated ion channels

(Armstrong and Bezanilla, 1973; Keynes and Rojas, 1974). Complementing

ionic current measurements with gating currents can reveal parts of the state

space of a model that are difficult to distinguish with ionic currents alone. The

constraining power of the additional data reduces compensation in the model

parameters and results in an identifiable model. Returning to the problem

of calcium binding to CaM, we showed that the parameters of the four-site

sequential model (Figure 2.1A) are not identifiable when constrained by mea-

surements of the net occupancy of CaMs four metal binding sites. Our analysis

indicates that enormous parameter uncertainties will result from fitting typical

binding data, even data with noise that is lower than is practically achievable.

However, this barrier may be overcome by performing experiments that quan-

tify the site-specific occupancy of the four binding sites in CaM as a function

of calcium concentration (diCera, 1995). Our results indicate that, given the

frequent occurrence of non-unique parameter estimation, analyzing parameter

identifiability should become a standard component of the experimental design

process.
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Chapter 3

Inferring Subunit Stoichiometry From Single

Molecule Photobleaching

The majority of the text and figures presented here have been published

previously in the Journal of General Physiology :

Hines, K.E. (2013). Inferring Subunit Stoichiometry From Single Molecule

Photobleaching. Journal of General Physiology. 141(6):737-46.

Abstract Single molecule photobleaching is a powerful tool for deter-

mining the stoichiometry of protein complexes. By attaching fluorophores to

proteins of interest, the number of associated subunits in a complex can be

deduced by imaging single molecules and counting fluorophore photobleaching

steps. Because some bleaching steps might be unobserved, the ensemble of

steps will be binomially distributed. In this work, it is shown that inferring

the true composition of a complex from such data is nontrivial because binomi-

ally distributed observations present an ill-posed inference problem. That is,

a unique and optimal estimate of the relevant parameters cannot be extracted

from the observations. Because of this, a method has not been firmly estab-

lished to quantify confidence when using this technique. This paper presents

a general inference model for interpreting such data and provides methods for
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accurately estimating parameter confidence. The formalization and methods

presented here provide a rigorous analytical basis for this pervasive experimen-

tal tool.

3.1 Introduction

The method of single molecule photobleaching has become a popular

tool to examine stoichiometry and oligimerization of protein complexes. In

recent work, this method has been used to determine the stoichiometry of

a great variety of transmembrane proteins such as ligand-gated ion channels

(Reiner et al., 2012; Ulbrich and Isacoff, 2008; Yu et al. 2012), voltage-gated

ion channels (Nakajo et al., 2010), mechano-sensitive channels (Coste et al.,

2012) and calcium-release-activated calcium channels (Demuro et al., 2011; Ji

et al., 2008). Additionally, this method has been used to examine complexes of

other types of proteins such as β-Amyloid (Ding et al., 2009), helicase loader

protein (Arumugam et al., 2009), and toxin Cry1Aa (Groulx et al., 2011),

among many others. The approach consists of attaching a fluorescent probe

(typically GFP or a variant) to a protein subunit of interest and imaging single

molecules. After sufficient excitation, a fluorophore will bleach, resulting in

a step-wise decrease in observed fluorescence. Then, by simply counting the

number of these bleaching steps, one can observe how many fluorophores were

imaged and thus how many subunits, n, were associated in the observed com-

plex. However, there is a non-zero probability, 1 - θ, that any given flurophore

will already be bleached (or otherwise unobserved) and thus less than the
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highest possible number of fluorescence decreases will be observed. Stated

differently, the parameter θ is the probability of successfully observing each

possible photobleaching event. As noted by the originators of this method,

the resulting observations are drawn from a binomial distribution (Ulbrich

and Isacoff, 2007), and thus the highest observed number of bleaching steps is

the minimum number of subunits in the complex.

As an example, consider the data shown in Figure 3.1 A and B. Here, I

have reproduced the distributions of observed bleaching steps reported in (Ul-

brich and Isacoff, 2007) and (Coste et al., 2012), respectively. In both of these

studies, the investigators are using the method of single molecule photobleach-

ing to quantify the assembly of alpha subunits of the cyclic nucleotide-gated

ion channel (CNG). These experiments are performed on the same protein,

and both show that the highest observed number of bleaching steps is four.

Note that these distributions are quite different, as preparation variability be-

tween the two experimental groups has likely led to differences in fluorophore

pre-bleaching (ie., differences in θ). In (Ulbrich and Isacoff, 2007), the authors

report that θ = .8 and in (Coste et al., 2012) the value is not reported, but I es-

timate it to be approximately .5, which is not much lower than other reported

values, such as .53 (McGuire et al., 2012). It is unclear how the differences

in these distributions (and in θ) should impact the interpretation of these re-

sults. Both of these distributions provide evidence that the CNG channel is

a tetramer, but to what extent does one of these distributions provide better

evidence in support of this conclusion?
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Figure 3.1: Example distributions reproduced from the literature. The ob-
served distributions reported in (Ulbrich and Isacoff, 2007) A and (Coste et
al., 2012) B, when using the method of single molecule photobleaching to as-
sess the stoichiometry of the cyclic nucleotide-gated ion channel. In both of
these distributions, the highest observed number of bleaching events is four.
However, note that these distributions are quite different, likely due to prepa-
ration variability. A method has not been established which takes into account
the properties of the observations in order to accurately accept and reject hy-
potheses.
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It is not immediately obvious how to determine the confidence with

which the number of subunits can be inferred from these observations. In

particular, it is possible that the true n is actually larger than the highest

observed number of bleaching steps, but due to the finite sample size, the true

tails of the distribution were not observed. Alternatively, the data collection

algorithm might have resulted in artifactual observations, causing an overesti-

mation of n. A method has not been firmly established to determine whether

parameter estimates are unique and the confidence with which parameters can

be inferred from this data. I show that this inference is non-trivial because

binomial distributions present an ill-posed inference problem: there does not

exist a unique combination of n and θ which could have produced a partic-

ular set of observations. As a result, it may be highly likely that this data

is misinterpreted. To resolve this disparity, I present a generalized method

of inference which provides accurate estimates of parameter confidence. The

methods developed here will prevent misinterpretation and will yield more

fruitful experimentation and accurate conclusions.
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3.2 Results and Discussion

3.2.1 Bayesian Inference

Since the analysis presented in this paper employs Bayesian inference,

this section provides a brief tutorial. Suppose that we have some probabil-

ity model with m parameters {θ1, θ2, ..., θm} = ~θ. This model will be denoted

p(yi|~θ) for any observable yi and quantifies the probability of observing some yi

given the values of parameters ~θ. If we gather observations {y1, y2, ..., yN}, de-

noted yN , then the aim of statistical inference is to use observations yN to infer

the true values of parameters ~θ. While it may be simple to obtain a single, op-

timal estimate of the parameters given the data, the goal of Bayesian inference

is to consider all possible values of the parameters and quantify which regions

of parameter space are most consistent with the observations. This is achieved

by constructing a probability distribution over the parameter space (the pos-

terior distribution), where areas of higher posterior probability are in better

agreement with the data than areas of lower posterior probability. In this

way, our uncertainty in estimating the parameters is captured by the posterior

distribution of the parameters given the data, p(~θ|yN). Posterior distributions

can be calculated from p(yi|~θ), the likehood of observing yi given ~θ, and p(~θ),

the prior distribution of the parameters. Using the posterior distribution, we

are able to quantify the full uncertainty in all model parameters.
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3.2.2 Binomial Distributions and Ill-Posed Inference

If k fluorescently labelled protein subunits are associated together, then

one might expect to observe k photobleaching steps. However, each fluo-

rophore may already be bleached, with probability 1 − θ. The likelihood of

observing k bleaching steps, if a total of n steps are possible, will follow a

binomial distribution :

p(k) = p(k|n, θ) = Bn(n,θ) (3.1)

=
n!

(n− k)!k!
θk(1− θ)n−k. (3.2)

Consider that we have one observed number of bleaching steps, yi, and

wish to estimate θ and n. Further, we wish to estimate the full distributions

over parameters θ and n that are most consistent with this observation. From

Bayes’ rule, we calculate this posterior probability distribution as

p(θ, n|yi) ∝ p(yi|θ, n)p(θ)p(n) (3.3)

∝ n!

(n− yi)!yi!
θyi(1− θ)(n−yi)p(θ)p(n). (3.4)

where p(θ) and p(n) are the prior distributions over the values taken by pa-

rameters θ and n. If N observations are independent, this proceeds similarly

for the full set yN :
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p(θ, n|yN) ∝ (3.5)

N∏
i=1

n!

(n− yi)!yi!
θyi(1− θ)(n−yi)p(θ)p(n). (3.6)

As an example of posterior inference, imagine that we have observations

drawn from a binomial distribution with a known n and we wish to estimate

θ. Since we suppose that n is known, the joint posterior distribution (equation

3.6) reduces to just the posterior distribution of θ:

p(θ|yN , n) = (3.7)

N∏
i=1

n!

(n− yi)!yi!
θyi(1− θ)(n−yi)p(θ). (3.8)

We need to decide upon a form for the prior distribution p(θ). Since θ

is the probability of a binary event, a useful and flexible form for p(θ) will be

the Beta distribution, Be(a,b). This distribution is defined on the interval [0,1]

and has two parameters, a and b. If we have little prior information about θ,

then setting a = b = 1 results in a flat prior distribution. If, however, we have

a strong guess about θ, then parameters a and b can be chosen to properly

reflect our prior belief. In either case, the posterior distribution is
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p(θ|yN , n) ∝ (3.9)

N∏
i=1

n!

(n− yi)!yi!
θyi(1− θ)(n−yi)p(θ) = (3.10)

N∏
i=1

n!

(n− yi)!yi!
θyi(1− θ)(n−yi) θ

a−1(1− θ)b−1

β(a, b)
, (3.11)

where β(a, b) is the proper normalization constant. The form of this posterior

simplifies to a useful result:

p(θ|n, yN) ∝ (3.12)

N∏
i=1

n!

(n− yi)!yi!
θyi(1− θ)(n−yi) θ

a−1(1− θ)b−1

β(a,b)
(3.13)

=
N∏
i=1

1

β(a,b)

n!

(n− yi)!yi!
θyi+a−1(1− θ)n−yi+b−1 (3.14)

∝
N∏
i=1

θyi+a−1(1− θ)n−yi+b−1 (3.15)

= θ
∑N

i=1(yi+a−1)(1− θ)
∑N

i=1(n−yi+b−1) (3.16)

It can be seen that this posterior of θ is also a Beta distribution,

p(θ|n, yN) ∝ Be(A,B) (3.17)

where A =
N∑
i=1

yi + a− 1 (3.18)

and B =
N∑
i=1

n− yi + b− 1. (3.19)
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Therefore, if data are drawn from a binomial distribution, the posterior

distribution of θ (with respect to a fixed n) will be a Beta distribution with

parameters A =
∑N

i=1 yi + a − 1 and B =
∑N

i=1 n − yi + b − 1. Figure 3.2 is

an example of the posterior distribution of θ for some simulated data. The

black vertical line is simply the estimate of θ that one would calculate by

varying the value of θ to find a best fit to the model Bn(4,θ): this is the

maximum likelihood estimate (MLE). The other curves in Figure 3.2 are the

posterior probabilities of θ for two hypothetical datasets of different sizes.

Note that in the absence of strong prior information, the maximum value of

the posterior distribution (the maximum a posteriori (MAP) estimate) will

equal the value of θ that we estimate by finding the best fit to the data (the

MLE). In this way, the full posterior distribution over the parameter not only

provides an optimal point estimate (MAP), but also provides a confidence

about the full range of the parameter and which values are consistent with

the data. As we would expect, as the number of observations increases, the

resulting posterior distribution will become more narrow and we will have less

uncertainty regarding the true value of θ. Finally, note that the estimates of θ

will depend on the value of n, and that the conditional posterior distribution,

p(θ|yN , n), defines a family of distributions for various values of n. This result

will be useful later.

For the experimental setting of single molecule photobleaching, n is

not known, but instead needs to inferred from the data. After gathering some

observations, yN , we can determine the highest observed number of bleaching

70



Figure 3.2: Posterior probability distribution of θ. An example of the posterior
probability of θ for hypothetical datasets. The vertical black line represents
the optimal point estimate of θ that one would calculate by curve-fitting (the
MLE). The other curves are the posterior probability distributions of θ for
different amounts of data. Note that as the number of observations increase,
the posterior distribution is narrowed as our confidence about the true value
is improved. Also note that the maximum value of posterior probability co-
incides with the MLE that we would calculate by curve fitting. Calculating
the posterior distribution over parameters provides not only an optimal point
estimate, but also a quantification of parameter uncertainty.
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steps, k̂, and be tempted to conclude that n = k̂. Before doing this, we will

want a way to establish that n = k̂ is highly supported by the data and that all

other n > k̂ are not supported by the data. We want to calculate p(n|yN), the

marginal posterior distribution over n. This is the probability (over all n) of

a particular n having given rise to the observations. We can directly calculate

the marginal distribution of n for this model. Consider a single observation

yi = k. The joint posterior is

p(θ, n|k) =
n!

(n− k)!k!
θk(1− θ)n−kp(θ)p(n) (3.20)

Since θ represents the probability of a binary event, we use a Beta

distribution as the prior, p(θ)=Beta(a,b), and set the prior on n as a bounded

uniform distribution. As mentioned previously, we never know θ with certainty,

so we must consider all possible values of θ for each n. The marginal posterior

of n is then found by integrating over θ,

p(n|k) =

∫ 1

0

p(θ, n|k)p(θ)p(n)dθ (3.21)

∝
∫ 1

0

n!

(n− k)!k!
θk(1− θ)n−kθa(1− θ)bdθ (3.22)

=
(n− 1)!

(n− k)!k!

Γ(k + a)Γ(n− k + b)

Γ(n+ a+ b)
, for n ≥ k (3.23)

where Γ() is the gamma function. The marginal posterior of n takes

the form of this ratio of gamma functions and it can be seen that this function
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is zero for n < k, is maximized at k, and is monotonically decreasing for

n > k. For many independent observations, the relevant posterior, p(n|yN), is

just a product of these functions and will have the general property of being

maximized at the largest observed yi and rapidly decrease for n > k̂.

Note that the marginal distribution of n (equation 3.23) will depend

only on the largest observed yi. Consider the case that the true n is larger than

k̂, but due to the finite sample size, no evidence of the true n was observed.

In this case, the posterior distribution will always be peaked at the smallest n

which can explain the data, and any greater n will have much smaller posterior

probability. This provides little ability to compare the evidence from, say,

Figure 3.1 A and B. We can ignore the Bayesian approach used thus far and

simply calculate the maximum likelihood estimate for n given k and again see

that the likelihood is always maximized at the smallest n that can account

for the data. Therefore, typical methods of estimation will fail in this pursuit,

and it is worth understanding why this is the case. This undesirable property

stems from the fact that this inference problem is ill-posed : there is generally

not a unique solution for n and θ for a given dataset. To visualize this, we can

compute the joint posterior distribution (equation 3.20) for a simulated data.

This joint posterior is plotted in Figure 3.3A for a region of the parameter space

in θ and n and areas of lighter color correspond to areas of higher posterior

probability (analogous to lower error between the data and the model). For

example, if we examine p(θ|n = 4, yN) then a horizontal slice through the joint

posterior (at n=4) corresponds to our estimate of θ given that n = 4 and this
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distribution is peaked around .6. Notice that for each n > 4, the estimate

of θ systematically shifts downward to lower values. This must be the case,

since if a binomial process of n = 10 somehow generated the data in Figure

3.1, then the failure probability, 1 − θ, would have to be quite high to have

generated no observations exceeding yi = 4. As a consequence, notice that the

joint posterior (Figure 3.2A) is highly structured, and it is possible for any

arbitrary n to have generated the data with a compensatory decrease in θ.

Further, the most probable estimate for n will always be the smallest possible

one, regardless of the observed distribution. Due to this, methods which rely

solely on likelihood calculation will not be able to discern the most accurate

estimate of these parameters.

To demonstrate how this ill-posed inference impairs our ability to learn

n from data, in Figure 3.3B and C I have simulated data meant to mimic the

range seen in Figure 3.1A and B by drawing from a binomial distribution with

n = 4 and θ equal to .8 (B) and .5 (C). In each case we are tempted to conclude

the true n is four, but can we make this assertion with equal vigor in both

instances? An obvious approach is fitting binomial distributions to the data

and assessing the quality of fit. The circles in Figure 3.3 represent the best fit

to a binomial distribution with n = 4 and it is clear that these fit the data well

in both cases and that we are able to accurately estimate the optimal value of θ.

However, in order to be confident about the assertion that n = 4, we must ask

whether these fits are unique. The crosses in Figure 3.3 show the best fit to a

binomial process with n = 5. In B, it is immediately obvious that even the best
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fit is a poor match to the data: the n=5 binomial distribution underestimates

the number of observed 3- and 4-bleaching steps and also predicts that roughly

10% of the data should have reflected 5-bleaching steps, whereas no 5-bleaching

steps are observed. In this case, it is very obvious that n = 4. In C, we cannot

be so certain. While the n = 4 binomial distribution certainly provides a good

fit to the data, the n = 5 model also fits the data quite well for all observed

bleaching steps. Further, the n = 5 fit predicts that only 1% of the data

should reflect 5-bleaching steps, and thus we might not have seen any simply

due to the finite sample size. In this case, fits to the data are not unique and

n and θ can compensate to produce identically good fits. This stems directly

from the fact that this inference problem is ill-posed, as depicted in the joint

posterior distribution (Figure 3.3A). However, note that the possibility of this

underestimation of n depends very strongly on the value of θ and qualitatively

we can be more confident in the data in B than C. The methods proposed in

the next section quantify this confidence.

3.2.3 Parameter Confidence

Returning to example data, such as that in Figure 3.3 B or C, sup-

pose we have observed some maximum number of bleaching steps, k̂, and are

tempted to conclude that n = k̂, but want to consider the irksome possibility

that n > k̂, though we did not observe any evidence of it. We would like to

make a statement to the effect of : Given N observations less than or equal to

k̂, we can conclude with confidence α that the true n is less than k̂ + 1. The
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Figure 3.3: Ill-posed inference. (A) Joint posterior distribution of n and θ,
given simulated data, yN . Areas of lighter color reflect areas of higher posterior
probability. (B) Data drawn from a binomial distribution with n = 4 and
θ = .8. (C) Data drawn from a binomial distribution with n = 4 and θ = .5.
In B and C, circles (o) represent the best fit to a binomial distribution with
n = 4 and crosses (+) represent the best fit to a binomial distribution with
n = 5. In C, the best fit to the data for n = 4 and n = 5 are equally good
because such fits are not unique. 76



strategy I propose is similar, in spirit, to classical hypothesis testing, where the

null hypothesis is that n > k̂ and 1-α quantifies the probability of observing

k̂ under the null hypothesis.

As the null hypothesis, assume that n = k̂ + 1, but we simply did

not observe any yi = k̂ + 1 due to finite sample size. For simplicity, assume

(unrealistically) that we have an exact point estimate of θ for n = k̂ + 1,

denoted θ̂ (this assumption will be relaxed later). Then the probability of

observing an event of size k̂ + 1 is

p(yi = (k̂ + 1)|k̂ + 1, θ̂) =
(k̂ + 1)!

((k̂ + 1)− (k̂ + 1))!(k̂ + 1)!
θ̂(k̂+1)(1− θ̂)((k̂+1)−(k̂+1))

(3.24)

=
(k̂ + 1)!

(k̂ + 1)!
θ̂(k̂+1)(1− θ̂)0 (3.25)

= θ̂k̂+1. (3.26)

We then need to calculate the probability of not seeing this event,

given that we have N observations. To do this, we consider the sampling

distribution of events yi = k̂ + 1 under the null hypothesis, Bn(k̂ + 1,θ̂).

This results in another binomial distribution, Bn(N,θ̂k̂+1), where there are

N chances of observing the event and the probability of the event is θ̂k̂+1.

Then the probability of k̂ being the highest observed yi is p(0|N, θ̂k̂+1) and our

estimate of confidence, α, is 1− p(0|N, θ̂k̂+1):
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α =1− p(0|N, θ̂k̂+1) (3.27)

=1− N !

(N − 0)!0!
(θ̂k̂+1)0(1− (θ̂k̂+1))N (3.28)

=1− (1− θ̂k̂+1)N . (3.29)

As an approximate guide for experimental design, we can systematically

explore the space of θ in order to understand how probable this underestima-

tion actually is. In Figure 3.4A, I have plotted α (confidence) for a region of θ

and N and for a fixed value of k̂=4. Again, smaller values of α mean that there

is a higher probability of not observing the true tails of distribution under the

null hypothesis. For smaller values of α, we cannot be confident that a dataset

with a similar θ and N was not drawn from a binomial distribution which was

larger than indicated by the data. For visual ease, the colormap in Figure

3.4A focuses on several contours of α and the colors threshold all α values to

where they lie within these regimes. From this systematic exploration, some

useful insights emerge. As we might have guessed, for large θ, the probability

of underestimating the true n is trivially small, even for small datasets. How-

ever, for θ in the range of only .5, which has been seen multiple times in the

literature, this possibility is not so rare. For concreteness, Figure 3.4B shows

α as a function of sample size for two values of θ. For high θ, we can have

high confidence in a conclusion even for a dataset of size 25. Conversely, if θ

is .5, then a dataset of the same size would lead to the wrong conclusion with

probability approximately 1
2
. Returning to the data from Figure 3.1, we can
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now (approximately) assess the strength of each of these data sources. We can

be very confident in these data sources as 1−α < 10−6 in both instances. For-

tunately, these two examples from the literature both provide reliable evidence

that the CNG channel is a tetramer, though without using such methods, we

would have been unable to quantify this confidence.
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Figure 3.4: Estimated parameter confidence. (A) Estimated α for various θ
and sample sizes. Value of α is represented by the colormap. For simplicity,
contours of α are shown and the color of each region indicates areas where α
lies between these contours. (B) α as a function of sample size for two values
of θ.
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It is also important to establish that our estimate of confidence with

respect to the hypothesis n = k̂ + 1 is a lower bound on all conceivable hy-

potheses n > k̂ + 1. For simplicity, we will first consider the potential null

hypothesis n = k̂ + 2. Again, we are assuming that we have an optimal esti-

mate θ̂, but now with respect to the hypothesis Bn(k̂ + 2, θ̂). As above, the

probability of observing an event yi = k̂ + 2 is θ̂k̂+2. Given that we have N

observations, the probability of observing zero events of size yi = k̂ + 2 is,

p(0|N, θ̂k̂+2) = (1− θ̂k̂+2)N . (3.30)

The probability of observing an event of size yi = k̂ + 1,

p(k̂ + 1|k̂ + 2, θ̂) =
(k̂ + 2)!

((k̂ + 2)− (k̂ + 1))!(k̂ + 2)!
θ̂k̂+1(1− θ̂)(k̂+2)−(k̂+1) (3.31)

= (k̂ + 2)θ̂k̂+1(1− θ̂). (3.32)

The probability of observing exactly zero of these events, given a total

N observations is,

p(0|N, (k̂ + 2)θ̂k̂+2(1− θ̂)) = (1− (k̂ + 2)θ̂k̂+1(1− θ̂))N . (3.33)

The probabilty of seeing no observations of size k̂+1 or k̂+2 is just the

product of equations 3.30 and 3.33. Therefore, our confidence that true n is

not k̂ + 2 goes as,
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α = 1− (1− θ̂k̂+2)N(1− (k̂ + 2)θ̂k̂+1(1− θ̂))N . (3.34)

Generally, the estimate θ̂ used in equation 3.30 will be less than that

of equation 3.29 (see Figure 3.3A). However, the confidence estimate in equa-

tion 3.34 involves multiplication with an additional term than equation 3.29.

Therefore, the confidence estimated when considering the hypothesis n = k̂+2

will always be higher than that for the hypothesis n = k̂+1. This is visualized

in Figure 3.5 where confidence is plotted as a function of sample size for the

null hypothesis n = k̂ + 1 in black and for the null hypothesis n = k̂ + 2 in

teal. Clearly, the estimate of confidence with respect to k̂ + 1 is the most

conservative estimate. It is easy to see that this relationship will persist for all

n > k̂ + 1. Due to this, we only need to calculate confidence with respect to

k̂+ 1, as this provides a lower bound on confidence with respect to all possible

n > k̂.
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Figure 3.5: Comparison of parameter confidence when considering multiple
models. The black curve is a plot of confidence versus sample size for the null
hypothesis n = k̂ + 1. The teal curve is the parameter confidence for the null
hypothesis n = k̂ + 2. It is clear that only the hypothesis n = k̂ + 1 needs to
be considered and will result an estimate of confidence which is a lower bound
on all possible hypotheses.
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The previous discussion provides a notion of confidence only if we know

the value of θ exactly. As this is never the case (Figure 3.2), we need to

generalize equation 3.29 to include our uncertainty in the value of θ. This

uncertainty is quantified by the conditional posterior distribution, p(θ|yN , k̂+

1), with respect to the null hypothesis n = k̂+1. Our estimate of alpha should

consider all possible values of θ, weighted by their posterior probability. In

particular,

α =1−
∫ 1

0

p(0|N, θk̂+1)p(θ|yN , k̂ + 1)dθ (3.35)

=1−
∫ 1

0

p(0|N, θk̂+1)Be(A,B)dθ (3.36)

=1− 1

β(A,B)

∫ 1

0

(1− θk̂+1)NθA(1− θ)Bdθ, (3.37)

where A and B are calculated from observed distribution as A =∑N
i=1 yi+a−1 andB =

∑N
i=1(k̂+1)−yi+b−1. In the absence of a simple form of

the integral in equation 3.37, we turn to Monte Carlo integration. Calculation

of α entails integrating a function over a probability distribution. In particular,

integration is over the conditional posterior of θ, ie.:
∫ 1

0
f(θ)p(θ|yN , k̂ + 1)dθ,

where f(θ) is the probability of observing zero events of size k̂ +1 under the

null hypothesis. If we can draw independent and identically distributed (iid)

samples from a probability distribution, then a finite number of such samples

can be used to approximate the integration. For example, if we draw S samples

θ̃ from the distribution p(θ), then
∫
f(θ)p(θ)dθ ≈ 1

S

∑S
i=1 f(θ̃i). Fortunately,
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the form of the conditional posterior of θ is simple (equation 3.17), so gener-

ating iid samples, θ̃, can be achieved by drawing beta random variables : θ̃ ∼

Be(A,B). Then α can be estimated as,

α ≈ 1− 1

S

S∑
i=1

p(0|N, (θ̃i)k̂+1) (3.38)

= 1− 1

S

S∑
i=1

(1− (θ̃i)
k̂+1)N . (3.39)

In this way, a proper estimate of confidence can be calculated which

takes into account the total uncertainty in all the model parameters. The

Monte Carlo integral in equation 3.39 converges quickly as is shown Figure

3.6A which is a plot of the estimate of α (for some simulated dataset) as a

function of the numbers of samples, θ̃. In Figure 3.6B is a comparison of

the estimate of confidence as calculated using the two methods developed so

far. The curve is a plot of confidence as a function of sample size for a point

estimate of θ (αθ̂). The circles the corresponding estimate of confidence using

the Bayesian model (αB) which takes into account the full uncertainty in θ.

Generally, the simplified estimation of confidence (αθ̂) overestimates confidence

due to the assumption that θ is known with certainty. Indeed, the estimated

confidence when considering the full parameter uncertainty is consistently less

than with the simplified approach and thus this method affords a more realistic

and conservative estimate of parameter confidence. Finally, note that as N

increases, so too will A and B (of equation 3.17). The result is that the

85



Figure 3.6: Estimation of parameter confidence using Monte Carlo integration.
(A) The estimate of confidence from equation 3.39 as a function of the num-
ber of posterior samples, θ̃, used for Monte Carlo integration. This estimate
converges quickly. (B) Confidence as a function of sample size estimated using
a point estimate of θ (αθ̂) and the Bayesian estimate (αB). It is clear that αθ̂
overestimates parameter confidence and that the true uncertainty in θ must
be taken into account for a accurate estimate of confidence.
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conditional posterior of θ becomes narrowed and more probability mass is

located closer to the optimal estimate, θ̂ (see Figure 3.2). In the limit of large

N , the estimate of θ shrinks to a points estimate and confidence calculated via

equation 3.34 converges exactly to equation 3.29 (see also Figure 3.6B). Thus,

the Bayesian method presented here is a generalized approach which collapses

to the more simplified estimate in the limit of large sample sizes.

I now address a related problem when interpreting such data, which is

discussed only briefly as the basic method was proposed previously in (Groulx

et al., 2011). Consider that an imperfect data collection algorithm induces

artifactual observations into the distribution. In particular, suppose that the

largest number of observed bleaching steps, k̂, occurs with an anomalously

low prevalence and we are tempted to conclude that all yi = k̂ are artifactual

and the true n is k̂ − 1. Given that we have observed K events of size k̂, we

simply need to consider the sampling distribution of events of size k̂ under the

hypothesis Bn(k̂, θ), and calculate the rarity of K in this sampling distribution.

As before, this sampling distribution is binomial, Bn(N,θk̂), and we simply

calculate p(K|N, θk̂). Previous authors estimated this sampling distribution

using the Poisson approximation to the binomial distribution and using a fixed

estimate of θ (see supplemental of (Groulx et al., 2011)). We generalize this

by considering the full uncertainty in the estimate of θ. The probability of

observing K or fewer events of size k̂ under the null model Bn(k̂, θ) will be

denoted γ. If we integrate over the uncertainty in θ, then γ is calculated as,
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γ =

∫ 1

0

K∑
j=1

p(j|N, θk̂)p(θ|yN , k̂)dθ (3.40)

≈ 1

S

S∑
i=1

K∑
j=1

p(j|N, (θ̃i)k̂) (3.41)

=
1

S

S∑
i=1

K∑
j=1

N !

(N − j)!j!
((θ̃i)

k̂)j(1− ((θ̃i)
k̂))N−j. (3.42)

Here, we have again drawn samples, θ̃, from the posterior of θ to use for

Monte Carlo integration. This integration is approximated by the sum over i

in the above equation. The rest of equation 3.42 is the sampling distribution

of observations of size k̂ and we sum up to K to calculate the probability of

seeing K or fewer observations. If γ is very small, it means that our observation

of K instances of size k̂ is quite rare under the model Bn(k̂, θ) and that we

might exclude all observations of size k̂ as artifacts and accept the hypothesis

n = k̂ − 1.

A potential complication that has been ignored in this work is the pos-

sibility of multiple complexes within the same observation volume. This could

occur if the density of complexes is sufficiently high, or if complexes have a

tendency to cluster together. In this instance, the observed distribution of

bleaching events would be drawn from a heterogenous population of species,

some of which contain n subunits and others which contain some multiple of n

subunits. In fact, this complication seems to be fairly common in the literature

and the interpretation of such artifactual data needs to be formally addressed.
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In previous work, the strategy of fitting sums of binomial distributions proved

successful at overcoming this complication (McGuire et al., 2012). This strat-

egy would be useful only to the extent that the uniqueness of fits could be

established. In principle, the methods presented in this paper could be gen-

eralized to a model of heterogeneous populations of binomially distributioned

observations. Such a model would necessarily have more parameters which

would exacerbate the problem of ill-posed inference. However, these methods

of confidence estimation should be applicable to a more generalized model.

Future work remains to be done in this area.
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3.3 Conclusions

Single molecule photobleaching is a pervasive tool for determining pro-

tein association which relies on attaching fluorescent probes to molecules of

interest and counting distinct photobleaching events. Since there is a non-zero

probability of not observing a particular fluorophore, the resulting distribu-

tion of photobleaching steps will be binomial. While it seems a straightforward

task to interpret such data and deduce stoichiometry, I show that this infer-

ence is ill-posed. This means that many possible combinations of n and θ can

produce very similar observations. Since there is not generally a unique and

optimal estimate of the relevant parameters for a given dataset, extracting the

stoichiometry can be error-prone without careful analysis. I develop a general

inference model for this type of data which takes into account the full un-

certainty in all model parameters. Using this framework, I develop methods

for hypothesis testing and calculating parameter confidence which allows for a

rigorous interpretation of such data. This work provides a rigorous analytical

basis for the interpretation of single molecule photobleaching experiments.
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Chapter 4

Modeling Single Molecule Time Series with

Nonparametric Bayesian Inference

Abstract The ability to measure the properties of proteins at the sin-

gle molecule levels offers an unparalleled glimpse into biological systems at

the molecular scale. The interpretation of single molecule time series has of-

ten been rooted in statistical mechanics and the theory of Markov processes.

While these methods have been helpful, they are not without significant limita-

tions including problems of model selection and parameter non-identifiability.

To overcome these challenges, I introduce the use of nonparametric Bayesian

inference for the analysis of single molecule time series. These methods pro-

vide a flexible way to extract structure from data instead of assuming models

beforehand. I demonstrate these methods with applications to several diverse

settings in single molecule biophysics. These methods bring a more powerful

approach to the study of molecular biophysics.
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4.1 Introduction

Proteins are the fundamental unit of computation and signal processing

in biological systems. Understanding the biophysical mechanisms that under-

lie protein conformational change remains an important challenge in the study

of biological systems.The ability to measure the properties of proteins at the

single molecule levels offers an unparalleled glimpse into biological systems at

the molecular scale. The was first achieved with ion channel proteins using

the patch clamp technique (Hamill et al., 1981) and has been extended to

soluble proteins using optical methods such as single molecule FRET (Weiss,

2000) and optical tweezers (Svaboda et al., 1993). Such single molecule time

series reveal stochastic dynamics indicative of rapid transitions between semi-

stable conformational states separated by free-energy barriers. This leads to

a natural interpretation of these time series within the context of equilibrium

statistical physics and the theory of Markov processes. Markov models fit well

within the conceptual framework of protein conformational change, yielding

mechanistic models with a finite number of discrete energetic states. Even

early investigators imagined that proteins achieve their functions by accessing

a small number of physical states (Hodgkin and Huxley, 1952), a framework

that persists today. In practice, single molecule time series, inevitably ob-

scured by experimental noise and other obfuscations, are often analyzed using

hidden Markov models (Rabiner, 1989). While this approach has been widely

successful, it is not without important limitations.

Current methods for the analysis of single molecule time series suffer

92



from problems of model selection and parameter identifiability. Analysis of

single molecule time series often begins with the investigator positing some

mechanistic model: the lens through which the data are to be interpreted.

Generally, we must postulate the existence of some number of biophysically

relevant states and perhaps even their interrelationships. For example, in the

study of ion channel gating, a typical analysis requires postulating a particular

mechanistic scheme consisting of a specified state space and connectivity, and

using a maximum likelihood approach to estimate the relevant parameters of

that scheme, given the data (Colquhoun and Hawkes, 1981; Horn and Lange,

1983; Qin et al., 1997). However, in most applications, the number of hidden

states is not obvious from the data and is not known beforehand. In fact, it

is likely the case that an experiment was performed with the purpose of un-

covering the existence and details of hidden molecular states. Therefore, the

choice of a particular model has a very strong effect on the analysis and inter-

pretation of the data. Methods for aiding in this problem of model selection

have been proposed for a variety of experimental settings and generally have

relied on model comparison via maximizing likelihood or penalized maximum

likelihood such as Akaike Information Criterion (Horn, 1987; Ball and Sansom,

1989; Liebovitch and Toth, 1990; Wagner and Timmer, 2001; Csanady, 2006).

The strategy with such methods is motivated by parsimony: the goal is to

find the model which provides the best explanation of the data, yet remains

the least complex. While parsimony is likely a useful guiding principal, these

methods leave us with no rigorous way of quantifying our confidence in models
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relative to each other; we must rely on ad hoc comparison of models based on

AIC score. Additionally, maximum likelihood methods are generally unable

to detect parameter non-identifiability, a pitfall that is increasingly common

as researchers pursue models of higher complexity (Siekmann, et al., 2012;

Calderhead et al., 2013; Hines et al., 2014). Though many attempts have

been made, likelihood-based approaches for modeling single molecule time se-

ries have proven inadequate.

Here I introduce a novel approach for the analysis of single molecule

time series which circumvents the problem of model selection by using non-

parametric Bayesian inference. The goal of these methods is to use a class of

probability models which are so flexible that we are able to extract structure

from data instead of assuming models beforehand. These methods have be-

come widely used in the machine learning community to handle challenging

problems such as document modeling (Blei at al, 2004), speaker diarization

(Fox et al., 2011), and image processing (Kivinen et al., 2007), among many

others. The approach relies on the theory of Random Probability Measures

and in particular, I use the Dirichlet process to provide an infinite dimensional

probability model with well-defined properties for modeling finite data. This

infinite model subsumes the set of all possible models, but in fitting finite

data, we learn which of the infinite model components are actually neces-

sary to provide a good explanation of the data. The properties of Dirichlet

process models yield parsimony while preventing over fitting, allowing us to

discover what process generated the data, instead of assuming it. Importantly,
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this Bayesian approach provides estimates of all parameters, their uncertainty,

and their identifiability. Finally, because our infinite dimensional model is a

well-defined probability distribution with well-known properties, we gain a

quantification of parameter confidence for different models which can be used

for model comparison.

I demonstrate the use of nonparametric Bayesian inference with three

use cases from single molecule biophysics. Using a Dirichlet process mixture

model, I show that dwell-times from single ion channel recordings can be mod-

eled nonparametrically in order to discover the number of biophysical states

hidden in the data. I then describe the hierarchical Dirichlet process hidden

Markov model and apply this model to time series from electrophysiology, sin-

gle molecule photobleaching and single molecule FRET. Finally, I introduce

the hierarchical Dirichlet process aggregated Markov model which allows us to

nonparametrically analyze single ion channel recordings and extract open and

closed states without specifying a model. These methods provide a flexible

and powerful framework for the analysis of diverse types of single molecule

data.
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4.2 Methods

Electrophysiology

HEK293 cells were cultured following standard protocols. Wild-type

BK channel cDNA was transiently transfected into HEK cells with Lipo-

fectamine 2000. As an optical marker, Enhanced green fluorescent protein

(EGFP) was cotransfected. Recordings of single BK channels were performed

2-4 days after transient transfection. Voltage-clamp was performed on inside-

out patches pulled from HEK cells at room temperature. Patch electrodes were

1-2 MΩ and electrode solution contained (in mM): 6 KCl, 136 KOH, 20 Hepes,

2 MgCl2, and pH adjusted to 7.2 using MeSO3H. Bath solution contained (in

mM): 6 KCl, 136 KOH, 20 HEPES, .01 Crown Ether, and pH was adjusted

to 7.2 using MeSO3H. Additionally, EGTA was added to buffer calcium and

varying amounts of CaCl2 were added. Free calcium concentrations were mea-

sured using a calcium-sensitive electrode. Recordings were performed with an

Axopatch 200A amplifier and digitized using an ITC-16 A/D converter. Single

channel traces were sampled at 100 kHz and analog filtered at 10 kHz, and

collected using PatchMaster software.

FRET

The single molecule FRET data from NMDA receptor proteins were

kindly contributed by David Cooper and Christy Landes at Rice University

and was collected using procedures similar to those reported in (Ramaswamy

et al. 2012). The agonist-binding domain of the NMDA receptor was expressed
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and purified using standard procedures. Streptavidin acted as a linker between

a biotin-PEG slide and the biotin-conjugated anti-histidine antibody bound

to the NMDA subunit. A PBS solution containing 250 nM protein tagged

with biotin-conjugated anti-histidine monoclonal antibody was then added.

To obtain the smFRET trajectories for the individual protein molecules, a 10

x 10-µm area of the sample was scanned to spatially locate 20-25 molecules.

The fluorescence signals of the donor and the acceptor were collected until

the fluorophores were photobleached. Photon counts were collected from two

APDs tuned to the wavelengths for acceptor and donor light which were then

processed to remove background signal and crosstalk from the signals and

FRET efficiency was calculated using standard methods. The emission inten-

sity trajectories were collected at 1-ms resolution and later binned to 10-ms

time steps.

Photobleaching

The single molecule photobleaching data was kindly contributed by

John Bankston at the University of Washington. The data were collected as

described in (Bankston et al., 2012), which is briefly replicated here: Oocytes

were injected with varying ratios of TRIP8b and HCN2 mRNA. TIRF movies

were acquired using a Nikon TE2000-E microscope with a high numerical aper-

ture objective (100x, 1.49 N.A.; Nikon) and the Evolve 512 EMCCD camera

(Photometrics). Oocytes were illuminated with a 488-nm argon laser from

Spectra Physics. An image stack of 800 - 1200 frames was acquired at 30 -

50 Hz. The first five frames after opening of the laser shutter were averaged,
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and the background was subtracted using the rolling-ball method in Image J

(National Institutes of Health). The image was then lowpass-filtered with a

2-pixel cutoff, and thresholding was applied to find connected regions of pixels

that were above threshold. A region of interest (ROI) of 6 x 6 pixels was placed

around the center of the spot. Spots smaller than 3 pixels and larger than 15

pixels were discarded manually. Finally, the summed fluorescence intensity

inside the 6 x 6 ROI was measured and plotted the data versus time.

Data Analysis

The models and algorithms used for data analysis are described in detail

in the next section. Analysis for the Dirichlet process mixture of exponential

was performed using scripts written in R. For the hierarchical Dirichlet process

hidden Markov model, the beam sampling implementation of (Van Gael at al.,

2008) was used (code available at mloss.org/software/view/205/). For the

hierarchical Dirichlet process aggregated Markov model, scripts were written

in Matlab.
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4.3 Theory

4.3.1 Nonparametric Bayes

Methods of nonparametric Bayesian inference rely on a class of flexi-

ble probability distributions known as random probability measures (RPM).

While there is an extensive literature on RPMs of all flavors, I focus on the

Dirichlet process (Hjort et al., 2010; Mueller and Rodriguez, 2012). The

Dirichlet process, DP(α, H), is a distribution on distributions (Ferguson,

1973). It has two parameters: a scalar α which is referred to as the con-

centration parameter, and a base distribution H. Draws from DP(α, H) are

random probability measures which are centered on H and whose variance

about H is controlled by α. A useful representation of a draw from a Dirich-

let Process is the stick-breaking process of (Sethuraman, 1994). A random

probability measure, G, is drawn from a Dirichlet Process as follows,

G ∼ DP (α,H) (4.1)

G =
∞∑
i=1

wiδθi , (4.2)

where all θi are independent and identically distributed (iid) samples

from the base distribution H, and the weights satisfy the following stick-

breaking construction: wi = vi
∏

k<i(1 − vk) for vk ∼ Beta(1, α). Imagine

breaking a stick of unit length into an infinite number of segments in the

following way. Break the stick at a random location w1 ∼ Beta(1, α) and

associate with this weight a random draw from H, θ1 ∼ H. The remaining
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length of the stick is now 1 − w1. Again draw v2 ∼ Beta(1, α) and break the

remaining length of the stick at this location, such that w2 = (1 − w1)v2 and

associated with this weight is another iid draw from the base measure, θ2 ∼ H.

This process is repeated infinitely with the result that the probability mass is

distributed across a countably infinite number of segments. For convenience, I

denote the sequence w1, w2, w3, ... which satisfies the stick-breaking construc-

tion as w ∼ GEM(α) (Pitman, 2002). The expectation of the size of each

weight, E[wi], decreases geometrically with i, such that only finitely many wi

occupy nearly all the probability mass while the infinitely many others occupy

negligible probability. From equation (4.2), we see that G is an infinite mix-

ture of components each with probability mass wi located at θi (see Figure

4.1). Note that G is a discrete probability distribution, even though H might

be continuous.

4.3.2 Dirichlet process mixture models

Since a draw from the Dirichlet Process is discrete, it can be awkward

when used with data known to be drawn from a continuous distribution. A

common variation is a Dirichlet Process mixture model (DPMM), where G is

convolved with some parametric continuous distribution (Lo, 1984). Since G

is a discrete distribution, this convolution results in a mixture model with an

infinite number of components. The data yi are drawn from a DPMM as,
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Figure 4.1: An example draw from a Dirichlet process, G ∼ DP (α,H), with
only finitely many (25) components of G visualized. (Top) Stick-breaking
weights, wi: this infinite sequence of weights sums to 1, yet most of the prob-
ability mass is occupied by finitely many of them. (Bottom) All θi are drawn
iid from the base measure, which is not visualized here but was a Normal
distribution centered at 0 with unit variance. The distribution G is discrete,
with point masses wi located at θi. For visualization, the cumulative sum of
G is shown.
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G ∼ DP (α,H) (4.3)

yi ∼
∫
p(yi|θ)G(dθ) (4.4)

=
∞∑
j=1

wjp(y|θj) (4.5)

We now imagine that each data point is drawn from one of an infinite

number of clusters, each one parameterized by θj. Due to the properties of

the stick-breaking process, only finitely many wj occupy nearly all the prob-

ability mass, while infinitely many others occupy negligible probability mass.

Since the data yi are sampled from the probabilities wj, a natural clustering is

induced in the data. In principle, the number of inferred clusters could range

between two extremes: there could be one cluster from which all the data are

drawn, or there could be N clusters, each data point being drawn from its

own component. Obviously, neither of these of these extremes is particularly

useful. Most commonly, we infer with high posterior probability the presence

of some small number of clusters k∗, where k∗ << N .

As an example, later I will model dwell-times from single ion channel

recordings using a mixture of exponential distributions. In this case, p(y|θ)

is an exponential distribution with unknown scale parameter θ. If we do not

know how many clusters (mixtures) are in the data, we can use DPMM to

model an infinite mixture
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yi ∼
∞∑
j=1

wje
−(θj/y). (4.6)

Model Inference

Inference with this infinite mixture model is achieved with the follow-

ing Gibbs Sampling scheme. I first describe the relevant conditional posterior

distributions for sampling a finite mixture of exponential distributions, and

then how sampling is performed with the infinite mixture model. For a given

finite mixture model with K components, we are interested in computing the

marginal posterior distributions of θ1, θ2, ..., θK . The likelihood is an exponen-

tial distribution,

p(yi|...) ∝ w1e
−(θ1/y) + w2e

−(θ2/y) + ...+ wKe
−(θK/y) (4.7)

=
K∑
j=1

wje
−(θj/y) (4.8)

For the prior on θ I use a conjugate gamma distribution, Ga(A,B). For

a single-component exponential distribution with a gamma prior, the posterior

distribution of scale parameter θ is,
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p(θ|yN) ∝
N∏
i=1

we−(θ/yi)Ga(A,B) (4.9)

=
N∏
i=1

we−(θ/yi)
BA

Γ(A)
θA−1e(−Bθ) (4.10)

∝ θ(A+N)e
∑
yi+B (4.11)

= Ga(A+N,B +
∑

yi) (4.12)

For the mixture model, I introduce a latent indicator variable, si, which

serves to label each data point according to which component it was likely

drawn from. Using these indicator variables, the posterior of θ is extended

to multiple components. Let Aj be set of all i such that si = j. Then the

posterior over θj goes as,

p(θj|yN , s1, ..., sN) ∝
∏
i∈Aj

we−(θ/yi)Ga(A,B) (4.13)

= Ga(A+ |Aj|, B +
∑
i∈Aj

yi) (4.14)

For each si, we sample the conditional posterior of datapoint yi belong-

ing to each of the K components from a Multinomial distribution,

p(si = j|...) ∝ wjp(yi|θj) (4.15)

p(si|...) ∝ Mult(p(si = 1|...), p(si = 2|...), ..., p(si = K|...)). (4.16)
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The cluster weights, wj, are drawn from the standard Dirichlet distri-

bution,

p(w1, w2, ..., wK |...) ∝ Dir(|A1|, |A2|, ..., |AK |). (4.17)

For any mixture model with K components, the conditional posterior

distributions described above (equations 4.14, 4.16, 4.17) specify an efficient

Gibbs sampler for calculating the posterior distributions of all model param-

eters. However, we aim to rely on the properties of the Dirichlet process in

order to model an infinite number of clusters. The only change to the previous

Gibbs sampler is how to deal with an infinite number of clusters. Sampling si

from a Multinomial distribution with K components is likely to be impossible

as K → ∞. Recall, however, that the Dirichlet process has the useful prop-

erty that finitely many components occupy most of the probability mass while

the infinitely many other one occupy a negligible amount. Thus, even though

θ1, θ2, ... is infinitely long, the DP induces a natural clustering such that the

data are drawn from a finite set, θ∗. During any particular iteration of Gibbs

sampling, let k− denote the number of components currently represented in

θ∗. Then data point yi might be sampled from one of the k− clusters which are

already represented, or from one of the infinitely many other clusters which

are not yet represented, but all of whom together occupy finite probability

mass. Sampling the indicator variables si goes as,
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p(si = j|s−,yN) ∝
{

nj
∫
p(yi|θ∗−j )dp(θ∗−j |y∗−j ) j ≤ k−

α
∫
p(yi|θj)dG(θj) j > k−

(4.18)

Thus, the indicator variables sample from each existing component with

probability proportional to the current size of the component, and generate

a new component with probability proportional to α. If we use a conjugate

model, then computing the integrals in equation 4.18 is simple and this scheme

can be used for sampling from an infinite number of clusters. In this case

of DP mixture of exponentials, we indeed can utilize the conjugacy between

exponential and gamma distributions and the previous method can be used for

inference. Alternatively, I prefer to use the slice sampling method of (Walker,

2007) because it’s clever as hell.

Recall that, generally, our mixture model posits that the data are drawn

from an infinite mixture of parametric distributions,

p(yi|...) =
∞∑
j=1

wjp(y|θj). (4.19)

We augment this model by adding a latent variable u, drawn from a

uniform distribution, such that the joint model is,

p(yi, u|...) =
∞∑
j=1

I(u < wj)p(y|θj). (4.20)
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Note that marginalization of equation 4.20 with respect to u results

in the original model (equation 4.19), ie.
∫
p(yi, u|...)du = p(yi|...). Since all

wj are less than one, any particular draw of u partitions the infinite set of

wj into two sets: a finite set for which wj > u and an infinite set for which

wj < u. By incorporating this augmented model into the Gibbs sampler, we

can sample u in order to only represent finitely many clusters at each iteration,

yet the aggregate sampling marginalizes the model back to that of equation

4.19. For each iteration, we draw u1, ..., uN uniformly on the intervals (0, wsi)

and represent k∗ clusters where

k∗∑
j=1

wj > 1−min(u1, ..., uN). (4.21)

Each iteration is simply a finite mixture model and the number of

mixture components fluctuates over the course of MCMC to sample the infinite

number of clusters.

Demonstration

Figure 4.2 shows an example of using this infinite mixture model. At

top left, a simulated dataset was drawn from a mixture of four exponen-

tial distributions. The four components had scale parameters, θj, equal to

{.001,.01,.1,10}. Data points are plotted logarithmically to aid in visualiza-

tion and a kernel density estimate is shown. When shown in this way, we

might guess by eye that there are distinct clusters in the data, but we would

be unsure of how many. Using a DP mixture of exponentials allows us to posit
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Figure 4.2: Demonstration of Dirichlet process mixture of exponentials. (Top
left) Simulated data drawn from a mixture of 4 exponential distributions with
scale parameters, θj, equal to {.001,.01,.1,10}, plotted logarithmically. (Top
right) Result of modeling this dataset with DP mixture of exponentials: the
infinite model converges to 4 components. (Bottom) Marginal posterior distri-
butions of all θj that remain in the model. True values shown as red vertical
lines. Algorithm parameters: α = 1.
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an infinite model and then learn how many clusters are actually in the data.

Shown at top right is the number of components in the infinite model that are

represented throughout the course of MCMC simulation. The model initial-

izes with an arbitrary, large number of clusters, but quickly converges to the

correct number. The bottom row of Figure 4.2 shows the marginal posterior

distributions for each of the θj that remain in the model. The true values of

each θj are shown as red vertical lines. Using the DP mixture of exponen-

tials, we were able to correctly learn the number of clusters in the data, and

also get an accurate quantification of the relevant model parameters and their

uncertainty.

4.3.3 Infinite Hidden Markov Model

Hidden Markov models (HMMs) have enjoyed vast application in many

areas of science and engineering due to their flexibility and predictive ability.

In this model, it is assumed that observable data, yt, is an obfuscation of a

hidden dynamical process that we cannot directly access. In particular, it is

assumed that the system of interest has access to K different hidden states

(1, 2, ..., K) and transitions stochastically between states at every time step.

The dynamics of the system are fully captured by the transition probability

matrix π, where each element πi,j is equal to p(st = j|st−1 = i), the probability

of a transitions to state j from state i at each time step. Atop these dynamics,

it is assumed that each hidden state, s, has a distinct emission distribution,

p(yt|st). Therefore, the system transitions stochastically according to π, and
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each observation is a random draw from p(yt|st). Because of the Markov

property, the joint probability of all hidden states and observations can be

written as

p(sN , yN |...) =
N∏
t=1

p(st|st−1)p(yt|st). (4.22)

While HMMs have been widely useful, a major limitation is that we

must specify how many hidden states, K, are in the model. To overcome

this barrier, (Beal et al., 2002) introduced the infinite hidden Markov model

(iHMM) which was later generalized and termed the hierarchical Dirichlet

process hidden Markov model (Teh et al., 2006; Fox et al., 2008). In this

model, the number of hidden states is left unknown, and the transition matrix,

π, is modeled nonparametrically using the hierarchical Dirichlet process. Each

row of π is a draw from a Dirichlet process and thus specifies the probability

of transitioning to each of an infinite number of other hidden states. In order

to ensure the all the rows of π are coupled, each row πi is drawn from a DP

with base distribution β, which itself is a draw from a Dirichlet process,

β ∼ GEM(γ) (4.23)

πi ∼ DP(α, β) (4.24)

θi ∼ H (4.25)

yt ∼ p(yt|sθi). (4.26)
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The goal is then to learn the number of hidden states from a particular

time series.

Model Inference

I first describe a Gibbs sampling scheme for parameter inference with

finite HMMs and then describe the implementation I use for the iHMM. For

these examples, we imagine our observations are normally distributed random

variables and that each hidden state corresponds to a distinct mean θi and

precision τi, such that yt ∼ N(θi,
1
τi

). Again, let Ai denote the set of all t for

which st = i. For the means, θi, I use a conjugate prior normal distribution

N(a, b). For each θi,

p(θi|...) ∝ N(M,V ) (4.27)

where M =
ab+ τ

∑
t∈Ai

yt

|Ai|τ + b
(4.28)

V =
1

|Ai|τ + b
(4.29)

With a conjugate gamma prior,p(τi) = Ga(c, d) , on the precisions, τi,

p(τi|...) ∝ Ga(A,B) (4.30)

where A =
d+ |Ai|

2
(4.31)

B =
1

bc+ 1
2

∑
(yt − θi)2

. (4.32)
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Sampling the transition matrix, π, is simple conditioned on the previ-

ous samples of hidden states s1, ..., sN . First, we use the standard Dirichlet

distribution prior for rows of the transition matrix, ie. p(πi) = Dir(m, ...,m).

Let matrix N track the number of transitions between hidden states i and j

such that Ni,j =
∑

t I(st = j|st−1 = i). Then each row of the transition matrix

is sampled as,

p(πi|...) ∝ Dir(Ni,1 +m, ..., Ni,K +m). (4.33)

Finally, the hidden states, st, are sampled using the forward-filter-

backward-sampler method (Scott, 2002). First we construct the K×N forward

matrix F in the following way. For each datapoint, yt, first compute vector O

which quantifies the conditional probability of observing yt given the emission

distributions of each hidden state,

O =


p(yt|θ1, τ1)
p(yt|θ2, τ2)

.

.

.
p(yt|θK , τK)

 . (4.34)

We then combine the observation probabilities, the transition probabilities,

and the occupancy probabilities from the previous time step,
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L = (O × π) • F,t−1 (4.35)

F,t =
L∑
L
. (4.36)

Having computed F deterministically, we use Gibbs sampling on the

backwards pass. Starting at time step N , we move backwards through each

time step t, and combine F with the transition probability

L = F,t • π,st+1 (4.37)

~p =
L∑
L
. (4.38)

We sample st from the resulting multinomial distribution,

p(st|...) ∝ Mult(~p). (4.39)

The result of this forward-backward sampler is a new sample of s1, s2, ..., sN .

For any hidden Markov model of fixed size, K, this Gibbs sampler allows us

to calculate posterior distributions of all relevant parameters.

Generalizing this model to the infinite case will proceed similarly as

with the mixture model. Again, the problem is that we now wish to consider

the probability of transitions to each of an infinite number of hidden states, a

computation that we cannot perform in our existing Gibbs sampler. However,
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using the hierarchical Dirichlet process hidden Markov model, we can sample

from both the currently instantiated hidden states as well as the infinitely

many other hidden states which have yet to be sampled (Teh et al., 2006),

p(st = j|s−, β, α,yN) ∝


(Nst−1,j + αβj)

Nst+1+αβst+1

Nk,+α
j ≤ k−, k− 6= st−1

(Nst−1,j + αβj)
Nst+1+1+αβst+1

Nk,+1+α
j = st−1 = st+1

(Nst−1,j + αβj)
Nst+1+αβst+1

Nk,+1+α
j = st−1 6= st+1

αβjβst+1 j = k− + 1

(4.40)

The sampling scheme works well, but it was noted that since Markov-

type models will inherently have very high correlation between the latent vari-

ables, this form of Gibbs sampling could mix very slowly. To remedy this, (Van

Gael et al., 2008) proposed the beam sampler for iHMMs. This implementation

combines the dynamic programming approach described previously (forward-

filter backward-sampler) with the slice sampling approach of (Walker, 2008).

As described previously, the model is augmented to include latent variables

u1, ..., uN in order to limit the computation to a finite number of hidden states

(at each iteration of MCMC). Once the appropriate number of states, k∗, is

computed from ~u, then we proceed with the Gibbs sampler just described for

finite HMMs. Again, throughout the course of MCMC, resampling ~u results

in fluctuations in the number of hidden states represented such that the ag-

gregate of all MCMC samples results in integration over the infinite number

of states. Sampling for β is performed using standard sampling methods for

hierarchical Dirichlet process models (Teh et al., 2006).
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4.3.4 Infinite Aggregated Markov Model

In the iHMM, it was assumed that each hidden state corresponds to

a distinct emission distribution, p(yt|θi). In some cases, we might want to

model a degeneracy such that multiple hidden states share the same emission

distribution. In this aggregated Markov model (Kienker, 1989), we imagine

that the hidden states appear as aggregated into one of A distinct emission

distributions such that A < K. We augment the iHMM with an indicator

variable, at ∈ {1, 2, ..., A}, that specifies which aggregate each data point is

drawn from such that yt ∼ p(yt|θat). In this case, we cannot identify different

states by their emission distributions, but aim to infer the hidden states based

on differences in their dynamics. In the next section, this model is applied

to data from single ion channel recordings and A is fixed to be two. It is

my intention with the iAMM that the number of aggregates, A, is known

beforehand and we mean to infer the number of hidden states within each

aggregate. I suppose it would be possible to treat the number of aggregates

as unknown and model both A and π nonparametrically, but I do not know of

any interesting use for such a thing, so I do not explore this possibility.

The use case for the iAMM will be the analysis of single ion channel

recordings, for which I add one additional feature to the model. Previous

authors extended the infinite hidden Markov model framework by allowing

for a strong preference for models with state-persistence (Fox et al., 2011).

That is, we assume the time-scale of system dynamics is significantly slower

than the data sampling rate. In this way, we are interested in solutions to

115



the data where the system stays in each state for many time samples and we

are intentionally not interested in models where states have zero dwell-time

before transitioning. This certainly seems to be the case with ion channels,

where from dwell-time distributions, we imagine that the channel tends to

stay in each state for multiple time samples (at least). Following (Fox et al.,

2011), I employ a sticky-iAMM by biasing probability mass onto the diagonal

elements of the transition matrix π. By ensuring non-zero probability mass on

the diagonal of π, we exclude models where states transition arbitrarily quickly

to other states. To achieve this, I make a slight alteration to the algorithm

described in the previous section. We add a hyper-parameter κ, the magnitude

of which tunes the stickiness of the resulting Markov model. Each row of π is

drawn from a Dirichlet process, with the diagonal elements biased by κ,

πj ∼ DP(α + κ,
αβ + κδj
α + κ

), (4.41)

and the rest of the algorithm remains the same. Incorporating uncertainty in

κ into the sampling model should be possible in principle (Escobar and West,

1995), but I prefer to use a fixed value. In experiments with simulated data,

κ = 100 works well, and I use this same value for all ion channel data analyzed

in the Results section.

An example of the sticky-iAMM, meant to mimic single ion channel

recordings, is shown in Figure 4.3. For simulating data, I use A = 2 and

K = 4, and use transition dynamics π such that the two states within each
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aggregate have very different transition probabilities. A sample of such data

is shown at the top of Figure 4.3 and we can even see by eye that within each

emission distribution are events that have very long durations and other events

with have very brief durations. By using the sticky-iAMM to analyze this time

series, we can infer how many states are hidden within the two aggregated

states. The result of this model is shown as the colors in the top of Figure 4.3:

each datapoint is colored according to which hidden state it likely was drawn

from. With the infinite model, we are able to correctly identify that there are

four states with distinct dynamics and are able to label all the data points:

open states as red and blue and closed states as green and gold. The middle of

Figure 4.3 is a plot of the number of hidden states represented throughout the

course of MCMC. Figure 4.3 (bottom) shows the posterior distribution over

number of hidden states and we see that high posterior probability is placed

on there being four hidden states within this time series. Therefore, we are

able to accurately infer the number of hidden states within this aggregated

Markov process time series.
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Figure 4.3: Demonstration of the infinite Aggregated Markov Model. (Top)
Simulated data from a 4-state process with two closed and two open states with
different dynamics. Each of the states differ in their exit rate - we can even
tell by eye that there is a short-lived state and a long-lived state, for both
open and closed. Colors correspond to the inferred state-assignments when
this time series is modeled with the iAMM; we find the number of hidden
states correctly and correctly label each data point. (Middle) The number of
hidden states over the course of MCMC simulation. (Bottom) The posterior
distributions over the number of hidden states. There is high probability that
this time series was generated from a 4-state process. Algorithm parameters:
α = 1, γ = 1, κ = 100.
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Finally, I discuss the effects of Dirichlet process parameters on model in-

ference. Recall that random probability measure, G, is a draw from a Dirichlet

process as, G ∼ DP(α,H). The Dirichlet process has two parameters, scalar

α and probability measure H. Base measure H serves as the expectation of

G(A) (on any interval A) such that E[G(A)] = H(A). Parameter α alters the

variability of G around the expectation H, Var[G(A)] = H(A)(1−H(A))
α+1

, such

that when α is large, G settles near H with low variance. With respect to the

stick-breaking representation of the Dirichlet process, α tunes the expected

size of the weights. Since the weights are related to iid draws from a Beta(1,α)

distribution, large α results in many weights which are relatively small and a

small value of α results in fewer weights which each occupy larger probability

mass. Therefore, when using a Dirichlet process prior for model inference, the

value of α will have an effect on the number of inferred model components.

One approach to handling this complication is to incorporate uncertainty in

α into the model by putting a parametric prior on α and marginalizing this

uncertainty through the course of MCMC sampling (Escobar and West, 1995).

In the applications explored in the next section, I am primarily interested in

applying these methods to distinct subsets of data, each of which represents

an independent measurement or a measurement in a different experimental

condition. In this way, I am most interested in comparing the inference re-

sults across different data subsets, where the inference algorithm is fixed in

each case. Then, differences between the models inferred from each subset

can be meaningfully compared, regardless of the uncertainty in α. There-
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fore, my strategy for choosing DP parameter values is to choose values which

have accurate and reliable performance with simulated data and then fix these

parameters for analysis of an entire dataset.

It is important to conduct sensitivity analysis to determine how changes

in α affect model inference. As an example, a Dirichlet process mixture of

exponentials was used to model data simulated from a mixture of two expo-

nentials where the components differed in time-scale by ten-fold (N = 200

data points). Figure 4.4 shows the result of this model inference for several

fixed values of α. It is clear that over this range of α, the effect on the inferred

models is negligible as the two component mixture is correctly inferred in each

case. For the biophysical applications in the Results section, I fix α = 1, which,

when compared across distinct data subsets, is able to distinguish when a small

number of components are in the data. For the Hierarchical Dirichlet process

models (iHMM and iAMM), we incur an additional parameter γ, which also

tunes the variability of a Dirichlet process around its base measure. Again, I

choose to fix γ = 1, since this low value leads to good performance with simu-

lated data. With the sticky-iAMM, we have an additional parameter κ which

biases probability mass onto the diagonal elements of a transition matrix π. I

fix κ = 100, which places a very weak prior on elements of π, since the traces

used for analysis have 105 data points. Nonetheless, this weak prior is able to

deter states which have zero dwell time and effectively accomplishes the goal

of the sticky-iAMM. Despite uncertainty in these algorithm parameters, my

strategy is to fix them to be small values which perform well with simulated
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data, because my primary goal is to compare between data sets given fixed

values of these parameters.
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Figure 4.4: Sensitivity of Dirichlet process mixture models to values of α.
Data was simulated as drawn from a mixture of two Exponential distributions
which differ in time-scale by 10. The result of model inference for several fixed
values of α. It is clear that over this range of α, the effect on the inferred
models is negligible as the two component mixture is correctly inferred in each
case.
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4.4 Results

I now demonstrate the use of nonparametric Bayesian inference with

diverse estimation problems in the study of single molecule biophysics.

4.4.1 Single Ion Channel Dwell-Time Distributions

First, I demonstrate the use of infinite mixture models to analyze dwell-

time distributions from single ion channel recordings. Shown in Figure 4.5 are

example recordings from a single BK channel at different holding voltages

and at different calcium concentrations. As the BK channel is gated by both

voltage and calcium, we see that increases in holding voltage or in calcium

concentration result in increased open probability of the channel. The BK

channel has been studied extensively by many groups and detailed mechanistic

models have been put forth to explain the effects of voltage and calcium on

channel gating (Cox et al., 1997; Rothberg and Magleby, 2000; Horrigan and

Aldrich, 2002; Rosales and Varanda, 2009). This detailed understanding of

BK channel gating provides an excellent testbed for the use of the these novel

analysis methods.

As a first step to analyzing single ion channel recordings, we can de-

construct the time series into sojourns within closed states and open states

(Colquhoun and Hawkes, 1981). To do this, I first de-noise, or idealize, the

single channel data by classifying each datapoint as corresponding to either

closed or open. The simplest method for this would be choosing a threshold of

halfway between the average open and closed current levels and then classify-
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Figure 4.5: Example data from a single BK channel at various holding voltages
and calcium concentrations. Patch currents reported in Amperes. Consistent
with previous BK work, increases in calcium or transmembrane voltage will
increase the open probability of the channel.
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ing each data point relative to this threshold (Colquhoun and Sigworth, 1983).

This simple method works fairly well, though one must be wary of artifacts

such as threshold-crossing due to poor SNR and correcting for missed events

(Colquhoun and Sigworth, 1983). I prefer an alternative approach, where we

treat the time series as a two-state hidden Markov model. Here, the open and

closed states each correspond to different levels of current obscured by noise,

each with different variability. Notice that the threshold method would yield

very similar results to any model with a symmetric noise distribution, but

makes the assumption that the current variance is the same for both open and

closed states. I prefer not to make that assumption and so model closed and

open states corresponding to Normal distributions each with distinct mean

and variance. Using the Gibbs sampling approach described in the Theory

section, I utilize a latent indicator variable s1, ..., sN to denote the state as-

signment for each data point. Thus, after MCMC inference, the indicator

variables s1, ..., sN yield the idealized trajectory through the hidden states.

This Bayesian approach to idealization of ion channel records has been used

previously and was thoroughly compared to previous methods (Rosales, 2004;

Siekmann et al., 2011), so I omit such a discussion here. Figure 4.6 shows an

example of this method. The data points are overlaid with colors correspond-

ing to which conductance state (closed or open) each point was likely drawn

from. With an idealized trace, we simply count how many consecutive samples

are spent in a state before transitioning to the other state: this is a dwell time

in one of the states. Decomposing the whole recording in this way yields a
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distribution of dwell-time events in the open state and in the closed state.

The theory of Markov processes indicates that the ensemble of dwell

times should be exponentially distributed, if there is truly only one closed state

and one open state. Figure 4.7 shows example dwell times from a recording

of BK at 6 uM Ca and -30 mV. The ensemble of open times indeed appears

to be exponentially distributed with a timescale of about 1ms. For the closing

times, however, things are somewhat more complex. Note that while these

data generally seem to be exponentially distributed, there is a large fraction

of these events that occur within the first histogram bin. In fact, this is a

cluster of events that happen on a faster timescale from the rest. Though a

single channel time series implies the presence of only two conductance states,

this dwell-time distribution indicates that there exist multiple states which

appear as closed yet which have measurably distinct dynamics. Given that

we have measured a set of dwell-times, interpretation of this data is simply

a matter of fitting to a (potentially) multi-component mixture of exponential

distributions. If we can decide how many components are in the data, then

many methods might be used for estimating the parameters of a finite mixture

model (Colquhoun and Hawkes, 1981; Sigworth and Sine, 1987).
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Figure 4.6: Using a two-state hidden Markov model to idealize single channel
recordings. The time series is assumed to be drawn from a two-state Markov
process where each state has a distinct emission distribution characterized by
a Normal distribution with different means and variances. The model is fit
using Gibbs sampling (see Theory) and the idealized trace (the hidden states)
is shown as colors. Segments of the time series are shown at two different time
scales.
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Figure 4.7: Dwell-time distributions. Example open- and closed-time distri-
butions from a BK channel in 6 µM calcium held at -30 mV. Note that the
histogram of closed-times indicates a large number of events occurring within
the first bin. This indicates that there are closing events which occur on mea-
surably distinct time scales. Hence, what appears to be simply open and closed
states within the time series is actually indicative of many hidden states which
have different dynamics. We can interpret dwell-time histograms as mixture
of distinct Exponential components in order to estimate the properties of each
hidden state.
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Much effort has been put into data transformations and other meth-

ods for deciphering how many components exist in single channel dwell-time

distributions (Sigworth and Sine, 1987; Landowne et al., 2013). Discovering

the number of components within such data is an ideal use for Dirichlet pro-

cess mixture models. As described in the Theory section, we imagine that the

data yi are drawn from infinite number of exponential components by using a

Dirichlet process prior on the mixture weights,

G ∼ DP(α,H) (4.42)

yi ∼
∫
p(yi|θ)G(dθ) (4.43)

=
∞∑
i=1

wje
−(θj/y). (4.44)

By using this infinite model to fit our finite data, we are able to discover

the number of components in the data, instead of assuming it. In the Theory

section, I demonstrated that this model could indeed discover the number of

components in simulated data drawn from mixtures of exponential distribu-

tions and it could also provide accurate estimates of the relevant parameters

and their uncertainties (see Figure 4.2). This method can be applied to dwell-

times from BK channel recordings at various holding voltages. Figure 4.8

shows dwell-time distributions from 5 seconds of data from a BK channel in 6

µM calcium held at several voltages. These dwell-time distributions have been

analyzed using an infinite mixture of Exponential distributions so that we can

discover the number of components in the data, instead of pre-supposing it
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or fitting many different models sequentially. In Figure 4.8, the dwell-times

are visualized as histograms and are also shown in the rug plots below the

histograms. The color of the data points corresponds to the component from

which they were likely drawn and the probability density of each component

is shown atop the histogram. Finally, the total probability density from all

components is shown as the grey trace, which overlays well with the observed

histograms. We are able to extract from these data the number of hidden com-

ponents and that these results are consistent with what is previously known

about the BK channel. For example, we see that with the three increasing

holding voltages, the infinite mixture model indicates the emergence of mea-

surably distinct open states. Additionally, we have a rigorous estimate of the

time-scale parameter for each component, and can see that the alterations

in mean dwell time (as a function of voltage) are consistent with previous

findings (Cox et al., 1997). This task of determining the number of significant

components in dwell-time distributions is easily accomplished using a Dirichlet

process mixture model (see Discussion for comparison with previous methods).
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Figure 4.8: Dwell-Time Distributions and Infinite Mixture Models. These
dwell-times, plotted logarithmically for visualization, are from 5 seconds of a
BK channel at 6 µM calcium and various holding voltages. Distributions of
dwell-time are analyzed with an infinite Exponential mixture model in order
to discover how many components are in the data. The color of the data points
corresponds to which component they belong to and the probability density
of each component is shown atop the histogram. Finally, the total probability
density from all components is shown as the gray trace. Algorithm parameters:
α = 1.
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4.4.2 Application of iHMM to Single Molecule Time Series

Hidden Markov models (HMM) have enjoyed vast application in many

areas of science and engineering due to their flexibility and predictive abil-

ity (Rabiner, 1989). For stochastic time series arising from single molecule

measurements, we might imagine that the observations yt are Normally dis-

tributed random variables and that each hidden state corresponds to a normal

distribution with a different mean and precision such that yt ∼ N(θi,
1
τi

). As

described in the Theory section, a nonparametric Bayesian extension of this

HMM framework is the hierarchical Dirichlet process hidden Markov model

(Beal et al., 2002; Teh et al., 2006). Using this model, we do not fix the

number of hidden states before data analysis, but instead we can learn the

number of hidden components within the data. An example use of this model

is shown in Figure 4.9. The top row shows an electrophysiological recording

from a patch which contains a unknown number of ion channels. The holding

voltage is negative, so downward deflections of current indicate events of ion

channel opening. From this multi-channel patch, we might want to estimate

the number of channels in the patch and the average open probability. When

different numbers of channels are open at different times, we observe this as

distinct levels of current, obscured by electrical noise. Thus, we can use an

infinite hidden Markov model (iHMM) approach to learn how many distinct

current levels exist in the time series and the number of channel openings seen.

Figure 4.9 (bottom) shows the result of iHMM modeling, with each data point

colored corresponding to which hidden state it is likely drawn from. It is clear

132



that we are able to correctly detect the number of distinct levels of current

and infer the number of open channels seen in this patch. In this particular

case, the signal-to-noise of the recording is quite high and we could perform

this task by eye fairly easily, but it serves as a general demonstration of the

kinds of data are well suited for the iHMM.
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Figure 4.9: Application of iHMM to multichannel patch recording. (Top) An
example recording of a patch that contains multiple ion channels. Hold voltage
is negative, so downward deflections of current are indicative of channel open-
ing. (Bottom) Colors indicate which hidden state each datapoint is assigned
to. iHMM is able to correctly determine the number of channels in the patch.
Algorithm parameters: α = 1, γ = 1.
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As a more challenging application, I use the iHMM to de-noise single

molecule FRET traces and decipher distinct conformational states and tran-

sitions. Figure 4.10 shows such single molecule FRET traces recorded from

the agonist-binding domain of the NMDA receptor (see Methods). In the

traces shown (left column), we can see that the FRET efficiency indicates the

molecules tend to reside within distinct conformational states for tens of mil-

liseconds before transitioning to other states. However, the noise in this data

makes it difficult to tell when these transitions occur and, more importantly,

how many conformational states are observed within each trace. We can use

the iHMM to analyze these traces in order to detect the presence of significant

conformational states. Figure 4.10 shows the data overlaid with colors accord-

ing to which hidden state each data point was likely drawn from. The iHMM

is able to decipher distinct conformational states based on both the properties

of the emission distribution (mean and variance) as well as the dynamics of the

states. Even if a state is visited extremely rarely (such as in the top trace), we

are able to confidently assert the existence of distinct conformational states.

The right column of Figure 4.10 shows the posterior distribution over number

of states for each trace. This posterior probability provides a simple way to

quantify confidence in an interpretation of the number of states and we can

use the posterior maximum to inform us about the most probable number of

distinct states in the data. An interesting extension of this model would be to

combine an ensemble of different traces into a hierarchal model (van de Meent

et al., 2013). In such a model, we imagine that each trace provides a brief
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snapshot of some underlying hidden distribution from which all the traces are

drawn. Then the traces, taken in aggregate, provide information about the

total conformational space and transition dynamics. Future work remains to

be done in this area.
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Figure 4.10: Application of iHMM to single molecule FRET. (Left column)
Example traces of FRET efficiency over time. Sudden conformational changes
are evident, but it it difficult to know the number of states and precise moment
of state changes in these noisy traces. Colors indicate which hidden state each
data point is assigned to. (Right column) Posterior distributions over number
of hidden states inferred for each trace. The iHMM is able to decipher the
number of the number of conformational states represented in these noisy time
series. Algorithm parameters: α = 1, γ = 1.
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As a final application, I turn to single molecule photobleaching. In this

setting, we observe photon counts over time and are interested in detecting

photobleaching events which reveal themselves as sudden decreases in photon

intensity. We are particularly interested in counting the number of photo-

bleaching events in a data trace. This setting is well suited for the iHMM

since we want to detect transitions between an unknown number of states

(corresponding to bleaching events). Figure 4.11 (left column) shows example

traces. We can see that photobleaching events are apparent, but in regimes

of low signal-to-noise, it might be quite difficult to tell by eye when bleaching

events occur. After analysis with the iHMM, the data points are colored corre-

sponding to the hidden state to which they were assigned. It is clear that the

iHMM is an excellent tool for this task. Even in settings where photobleaching

events are very difficult to detect by eye (bottom), the iHMM is able to deter-

mine the number of transitions in the data. The right column shows posterior

distributions over the number of hidden states in the data, which provides a

natural quantification of confidence when interpreting this data. Using the

iHMM provides a rigorous and unbiased method to analyze these traces.
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Figure 4.11: Application of iHMM to single molecule photobleaching. (Left
column) Example traces of photon counts over time (sampling rate 30 Hz).
Sudden photobleaching events are evident, but it it difficult to know the num-
ber of bleaching steps in the presence of noise. Colors indicate which hidden
state each data point is assigned to. (Right column) Posterior distributions
over number of hidden states inferred for each trace. The iHMM is able to
decipher the number of the number of bleaching events and also provides a
quantification of confidence. Algorithm parameters: α = 1, γ = 1.
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4.4.3 Application of iAMM to Single Ion Channel Recordings

Next, I demonstrate the use of the infinite aggregated Markov model

to analyze single ion channel recordings. I previously analyzed BK single

channel data by deconstructing the time series into dwell-times and fitting

Exponential mixture models. This approach throws away much information

and a preferable method is to model each time point in Markov-type model

(Qin et al., 1997). In the Theory section, I introduced the infinite aggregated

Markov model (iAMM), where we assume a degeneracy such that multiple

hidden states share an emission distribution. I demonstrated that the iAMM

(more precisely, the sticky-iAMM, see Theory section) can be used to learn

the number of hidden states from an AMM time series (Figure 4.3). I now

apply this to single BK data where we see stochastic transitions between open

and closed states of the channel, but suspect there exist more than two hidden

states. Using the iAMM , we can learn the presence of open and closed states

in the time series, instead of assuming this beforehand. For Figure 4.12, I have

used 1 second of a recording of a single BK channel in 110 µM calcium held

at +30mV. The top row of Figure 4.12 visualizes the posterior distribution

over the number of hidden states and we see that we infer the presence of four

hidden states. Figure 4.12 (middle) shows the data trace that was analyzed

and the colors correspond to the hidden state form which each data point was

likely drawn. This analysis reveals one open state and three closed states. We

can see that there is a fast closed state (green) and a measurably slower closed

state (red). Additionally, there is an extremely slow closed state (pink), of
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which we have only one ”observation”, but are easily able to infer its existence

due to its distinct temporal dynamics. The bottom trace is the same data at

an expanded time scale. Encouragingly, we are able to detect the presence of

distinct hidden states based solely on their dynamical differences in single ion

channel recordings.
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Figure 4.12: Application of iAMM to BK data. (Top row) The posterior dis-
tribution of number of hidden states indicates that this data has four hidden
states. (Middle) Data trace with each data point labelled according to the
hidden state from it was likely drawn. The iAMM finds one open state (blue),
and three closed states. For the closed states, the fastest time-scale state
(green) is different enough from a slower one (red) that we are able to iden-
tify them as distinct. Additionally, an extremely slow closed state (pink) is
identified. (Bottom) Same data at an expanded scale. Algorithm parameters:
α = 1, γ = 1, κ = 100.
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Before continuing, I describe a very general barrier to the analysis of

single channel recordings which the iAMM is still unable to surpass with the

present dataset. (Kienker, 1989) noted that with aggregated Markov models,

the space of potential mechanisms that can adequately fit any given equilib-

rium data is non-identifiable. In particular, it was shown that the transition

matrix π of any given AMM exists amongst a (possibly infinite) equivalence

class of other π̃ which would all produce identical data. Not only might it

be impossible to derive a unique estimate of π from data, but the members

of such an equivalence span a continuous range of π̃, including members with

entirely different connectivities between the hidden states. Hence, the prob-

lem of model selection is exacerbated, since many different models (different

connectivities) can be transformed into one another and would all fit the data

equally well. In fact, the only way to circumvent non-identifiability in aggre-

gated Markov models is to pre-suppose a particular connectivity. Often, such a

constraint on the connectivity between the states allows typical inference meth-

ods, such as maximum likelihood (Qin et al., 1997) or Gibbs sampling (Rosales,

2004), to yield a unique estimate of π conditioned on a particular model. How-

ever, since my goal has been to avoid the pre-specification of models, the iAMM

approach will inevitably suffer from this model non-identifiability when fitting

equilibrium time series. It is likely that this non-identifiability can be over-

come by using non-stationary methods (Kienker, 1989; Millonas and Hanck,

1998; Milescu et al., 2005) and future work remains to be done in this area.

Despite this limitation, the iAMM approach can still be used to gain

143



qualitative insights and to test the algorithm against what is previously known

about the BK channel. In order to visualize the results, I cast the inferred

state topology into a canonical form which is representative of, and unique to, a

particular equivalence class. Several such canonical forms have been proposed

including uncoupled form (Kienker, 1989), manifest interconductance rank

form (Bruno et al, 2005), reduced dimensions form (Flomenbom and Silbey,

2006), and maximum entropy form (Li and Komatsuzaki, 2013). Since I am

using canonical forms solely for visualization, and not to estimate the resulting

transition rates, I use the Kienker uncoupled form due to its simplicity. Here,

the connectivity is shown in the simplest form where none of the states of the

same aggregate are connected to each other. That is, open states are only

connected to closed states, and vice versa.

Figure 4.13 shows the result of using the iAMM to analyze several BK

recordings at 6 µM and 110 µM calcium. The data visualized here represents

a small fraction of the full trace used for model inference which was 1 second

of data (105 samples) in each case. At left, the data traces are shown with

data points colored corresponding to which hidden state they are likely drawn

from. At right, the model inferred from each trace is shown in Kienker un-

coupled form. Again, while the state topology shown here is but one of many

which could explain the data with high posterior probability, the visualization

is used here to convey the general complexity of the gating mechanism which

generated each trace. At very low holding voltage (-100 mV), open probability

is very low, but also the available state space explored by the channel is as

144



simple as possible, with one open state and one closed state. As the holding

voltage is increased, not only does open probability increase, but also we detect

the presence of more open and closed states. The increase in voltage affects

channel function not only by shifting the open probability, but by allowing the

channel to access a more complex state space. As holding voltage is increased

further, and open probability begins to saturate at a high value, the complex-

ity of channel gating decreases, as the channel accesses fewer conformational

states. The last trace in Figure 4.13 is at +30mV and 110 µM calcium, which

is in an extreme corner of BK’s activation range. The open probability is very

high and in this extreme range the complexity is decreased, as the channel

mostly occupies a single open state with infrequent sojourns to just two closed

states. Consistent with what is known about the BK channel (Rothberg and

Magleby, 2000; Talukder and Aldrich, 2000; Horrigan and Aldrich, 2002), we

see that in the extreme ranges of voltage and calcium, characterized by either

very high or very low open probability, the channel gating landscape is the

least complex. Conversely, in the middle of the activation range, the gating

scheme is most complex, with the channel accessing a diversity of open and

closed states. Using a nonparametric Bayesian approach, we were able to re-

cover this fundamental principle of channel gating, by discovering structure

hidden within these time series.
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Figure 4.13: Recordings from a BK channel at multiple holding voltages and
calcium concentrations analyzed using the sticky-iAMM. Data points are col-
ored corresponding to the hidden state from which they were drawn in the in-
ferred model. At right, the inferred model for each trace, visualized in Kienker
uncoupled form. Algorithm parameters: α = 1, γ = 1, κ = 100.
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4.5 Discussion

Here I have introduced the use of nonparametric Bayesian inference for

the study of single molecule biophysics. These methods rely on the properties

of the Dirichlet process in order to employ an infinite dimensional probability

distribution. When used to model finite data, this infinite model effectively

allows us to discover structure in data instead of assuming it beforehand.

The power and flexibility of these methods was demonstrated with diverse

applications in single molecule biophysics.

I demonstrated a basic use of nonparameteric Bayesian inference by

using a Dirichlet process mixture model to analyze dwell-times from single ion

channel recordings. Using this infinite mixture model, it is possible to discover

how many hidden clusters lie within the data and in this way, the number of

hidden states could be learned, instead of assumed. For the case of ion channel

dwell-times, much emphasis has been placed on optimal methods for analyzing

such data (Colquhoun and Hawkes, 1981; Sigworth and Sine, 1987). Recently,

(Landowne et al, 2013) described a method to fit dwell-time data without

knowing the number of components. This is similar in goal to the infinite

mixture model described here. Their approach, grossly paraphrased, consists

of: beginning with a number of components which is very large (they use 20),

iteratively using maximum likelihood to optimize the timescale and weight

parameters of each component, removing clusters which are deemed to be too

similar in timescale (they chose 2%) or too small in weight (they chose 10−5),

continuing this process of removing clusters until the log-likelihood is no longer
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improved. They demonstrate that their approach works very well to correctly

identify the number of components in simulated data as well as BK channel

data. Their approach, while convincingly demonstrated and validated, is not

based on a rigorously defined mixture model, but instead consists of iterative

hypothesis testing, ad hoc thresholds, and parameter optimization until the

fit to data no longer improves. In contrast to this, the Dirichlet process mix-

ture model is rigorously defined over an infinite set of mixture components,

however, the properties of the Dirichlet process guarantee a clustering of the

data. With channel data, a small number of distinct clusters is detected with

high posterior probability. By sampling the space of all mixture models, we

calculate the posterior distribution over the number of clusters in the data and

can quantify our confidence in an interpretation of the data. Further, by sam-

pling the full posterior (as opposed to simply seeking a maximum likelihood

estimate), we can address parameter non-identifiability, a pitfall which is sure

to be problematic for exponential mixtures and small sample sizes.

In addition to channel data, (Landowne et al., 2013) test out their meth-

ods with classic datasets which have been deemed to be extremely challenging.

They show that their method does very well in all cases to correctly detect the

number of components. For comparison and validation, Figure 4.14 shows the

result of using an infinite mixture model to analyze each of these data sets.

Boliden 3 corresponds to a mixture of four exponentials where each compo-

nent has higher timescale parameter and larger weight. Boliden 4 is a mixture

of four exponentials where one of the components has smaller weight than
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the adjacent components. Figure 4.14 shows the result of using the infinite

mixture model to analyze N = 10000 data points drawn from each distribu-

tion, using the parameter values reported in Tables 2 and 3 of (Landowne et

al., 2013). It is clear that we infer, with high posterior probability, the correct

number of components in each case. Importantly, we can detect the presence of

these components using only 104 data points, which is a thousand-fold smaller

sample size than the 107 samples used by (Landowne et al., 2013). While it

is clear that the approach of (Landowne et al., 2013) works very well with

large datasets, and is almost certainly faster than an MCMC-based approach,

they discuss the limitations of their hypothesis-testing based approach when

faced with inadequate sample size. In this small-sample regime, the Bayesian

approach presented here will be much better able to detect significant compo-

nents in the data.

A generalization of mixture models might be one where we do not

assume each datapoint is drawn independently from the underlying distribu-

tions, but instead we assume there is dependency between successive data

points which is governed by some Markov process. Such a hidden Markov

model is a popular tool for modeling stochastic time series and I showed how

the nonparametric Bayesian extension, the hierarchical Dirichlet process hid-

den Markov model, can be successfully applied to single molecule time series.

Using an iHMM to analyze multi-channel patch recordings allows us to esti-

mate the number of channels and open probability in noisy electrophysiological

data. Additionally, I used the same model to analyze data from the increas-
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Figure 4.14: Demonstration of the infinite Exponential mixture model with
data sets discussed in (Landowne et al., 2013). Boliden 3 corresponds to
a mixture of four exponentials where each component has higher timescale
parameter and larger weight. Boliden 4 is a mixture of four exponentials
where one of the components has smaller weight than the adjacent components.
Using the parameter values reported in (Landowne et al., 2013), 104 data
points are drawn from each mixture and analyzed using the infinite model.
We are able to correctly recover the number of components and the relevant
parameters.
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ingly popular method of single molecule FRET. In this case, we are interested

in detecting distinct conformational states, as manifest in the noisy FRET effi-

ciency signal. We can use the iHMM to analyze these traces in a typical hidden

Markov approach, but without assuming the number of distinct states or their

properties. Finally, I showed that single molecule photobleaching traces can

be analyzed with the iHMM in order to detect bleaching steps. Especially in

cases of poor signal-to-noise, the iHMM provides a principled method to ana-

lyze such data. Generally, using the infinite hidden Markov model provides a

rigorous and unbiased method to interpret these time series.

I showed that a special case of the iHMM, the infinite aggregated

Markov model, could be used to analyze single ion channel recordings in order

to detect the existence of hidden conformational states. I showed that this

approach can be used to infer the presence of distinct open and closed states

which differ only in their dynamics. Further, when this approach is applied to

BK channel recordings at multiple calcium concentrations and holding volt-

ages, the inferred gating schemes recapitulate basic principles regarding the

complexity of BK channel gating. However, with the equilibrium single chan-

nel traces, we are still limited by non-identifiability and cannot infer a unique

and reliable estimate of the connectivity between these hidden states. Pre-

vious authors have shown the benefits of globally analyzing large data sets

in aggregate or of incorporating non-stationary stimulus protocols (Kienker,

1989; Millonas and Hanck, 1998; Milescu et al., 2005; Rosales and Veranda,

2009). I suspect that such a strategy, coupled with an iAMM type approach,

151



may be all that is required to overcome the barrier of non-identifiability and be

able to extract accurate and reliable models of ion channel gating from single

molecule recordings. Future work remains to be done in this area.

The study of protein biophysics has been greatly aided by the emer-

gence of single molecule experimental techniques, but developing rigorous and

general tools for the analysis of such data remains an open challenge. I have

described the use of nonparametric Bayesian inference, a powerful paradigm

which has gained recent popularity in the statistics and machine learning com-

munities and which has been applied successfully to many difficult problems

in science and engineering. These tools allow us to side-step the problems

of model selection and user bias and instead allow us to discover significant

structure in data, instead of assuming it beforehand. This framework was

demonstrated with diverse settings in single molecule biophysics, with models

including nonparametric mixture models, hidden Markov models, and aggre-

gated Markov models and data sets including electrophysiology, single molecule

FRET, and single molecule photobleaching. This paradigm provides a power-

ful basis to enhance the study of protein biophysics.
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Appendix A

A Primer on Bayesian Inference for

Biophysical Systems

A.1 Introduction

The proper interpretation and analysis of experimental data is vital

in the endeavor to understand natural phenomena. Here, I describe the use

of Bayesian inference, a statistical paradigm which has gained popularity in

many fields including astrophysics (Loredo, 1990), systems biology (Klinke,

2009), econometrics (Geweke, 1989), and many others. However, the adop-

tion of Bayesian methods has been relatively slower in the study of protein

biophysics, a field which relies primarily on more classical techniques. It is

not my intention here to argue the merits of Bayesian methods over others, as

this has been discussed elsewhere (Siekmann et al., 2012; Calderhead et al.,

2013; Hines et al., 2014). Instead, my aim is to provide an accessible introduc-

tion and tutorial on the use of these methods with a focus on problems which

should be familiar to the biophysicist.
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A.2 Bayesian Inference

In Bayesian inference, the primary goal is to compute the posterior

distribution. This is a probability distribution over the parameter space which

quantifies how probable it is that a particular value of the parameter(s) gave

rise to the observed data. This distribution provides not only an optimal

point estimate (the maxiumum a posteriori or MAP estimate), but also a

quantification of the whole parameter space, yielding a simple method for

calculating confidence intervals. In this way, we consider the entire parameter

space and ask which regions are most likely to be true, given the data we saw.

For straightforward models, we can derive simple expressions for posterior

distributions by using conjugate models. For more complex models, we can

take advantage of computational methods that allow us to estimate posterior

distributions of arbitrarily high dimension.

Consider that we treat not only the data y as random, but also treat the

parameters of interest θ as random variables. From the definition of conditional

probability, we can write

p(y|θ) =
p(y, θ)

p(θ)
(A.1)

p(y, θ) = p(y|θ)p(θ). (A.2)

We can also write the other conditional density,
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p(θ|y) =
p(y, θ)

p(y)
(A.3)

p(y, θ) = p(θ|y)p(y). (A.4)

These are two expressions for the joint density p(y, θ), and we can

equate them,

p(y|θ)p(θ) = p(θ|y)p(y). (A.5)

Rearranging this yields Bayes’ rule,

p(θ|y) =
p(y|θ)p(θ)
p(y)

. (A.6)

By treating both the parameters and the data and random variables, a

simple manipulation of conditional probabilities yields a general expression for

p(θ|y), the posterior distribution of the parameters. The other components of

Bayes rule are: p(y|θ), the likelihood of seeing the data given the parameters,

p(θ), the prior distribution of the parameters, and p(y), the marginal likelihood

of the data. In practice, we generally only need to quantify the posterior

distribution up to a constant of proportionality, so p(y) is often ignored since

it is independent of θ. This yields a more common form of Bayes’ rule,

p(θ|y) ∝ p(y|θ)p(θ). (A.7)
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Computing the posterior distribution is then simply a matter of decid-

ing upon the likelihood and the prior distribution and combining them. I’ll

next show that if we put a little thought into finding prior distributions which

are conjugate to the likelihood, then we can arrive at a simple expression for

the posterior. Since we won’t always be able to use a conjugate prior, I’ll

later discuss (at length) the powerful computational methods that allow us to

calculate arbitrarily complicated posterior distributions.

A.3 Conjugate Models

I’ll motivate our first foray into Bayesian modeling by taking as an

example the experimental method of single molecule photobleaching (Ulbrich

and Isacoff, 2007). This is a powerful method for determining the interaction

and stoichiometries of protein complexes. The strategy consists of tagging

a fluorescent probe to a protein subunit of interest and then imaging single

molecules. After sufficient time, the fluorophores will photobleach, and by

counting the number of photobleaching events, we get a direct readout of how

many subunits are associated. However, there is a non-negligible probability

that a fluorophore is already bleached before the measurement started. We’ll

quantify this probability of being pre-bleached as 1− θ; that is, θ is the prob-

ability that a fluorophore bleaching event will be successfully detected. The

result of this pre-bleaching is that a complex of n molecules might result in

less than n bleaching events. Therefore, the ensemble of many such counts

will be Binomially distributed such that the probability of seeing y bleaching
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steps when n are possible goes as,

p(y|θ) =
n!

(n− y)!y!
θy(1− θ)n−y. (A.8)

As a simple inference problem, let’s suppose that we want to estimate

the pre-bleaching probability of an unknown fluorophore. To do this, we use

a protein system that is well known so that we can assert that n is fixed to

some known value. We perform a photobleaching experiment and gather N

independent observations of bleaching counts and denote the total dataset as

yN . Our goal is then to estimate θ from yN . Restating Bayes rules,

p(θ|yN) = p(yN |θ)p(θ) (A.9)

p(θ|yN) =
N∏
i=1

p(yi|θ)p(θ). (A.10)

Since we know the likelihood is a Binomial distribution, we can begin

to fill in the components of Bayes’ rule,

p(θ|yN) =
N∏
i=1

n!

(n− yi)!yi!
θyi(1− θ)n−yip(θ). (A.11)

All that remains is to decide on a form of the prior distribution over

θ. Since θ is the probability of a binary event, it will be useful to utilize a

distribution that is defined over the unit interval. More importantly, it will be
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very useful if we choose a prior distribution which combines with a binomial

likelihood in a useful way. A distribution that accomplishes both of these goals

is the Beta distribution, Be(a, b),

Be(a, b) =
1

β
xa−1(1− x)b−1. (A.12)

Depending on how we choose the hyperparameters a and b, we can

quantify any prior confidence we have about the value of θ. Alternatively,

letting a = b = 1 results in a flat prior distribution over θ. Figure A.1 shows

beta distributions of different values of a and b. Notice that this distribution

provides a very flexible way for us to quantify any prior knowledge we might

have, or we can adopt a flat prior.

The most useful outcome of using a Beta prior is that this distribution

is conjugate to our Binomial likelihood. Returning to Bayes’ rule, we now have

a form for the both the likelihood and the prior in our model.

p(θ|yN) =
N∏
i=1

p(yi|θ)p(θ) (A.13)

p(θ|yN) =
N∏
i=1

n!

(n− yi)!yi!
θyi(1− θ)n−yi 1

β
θa−1(1− θ)b−1. (A.14)

We can remove some terms that don’t depend on θ and we still retain

a distribution that is proportional to the posterior distribution,
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Figure A.1: The Beta distribution is shown with three different parameteriza-
tions.
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p(θ|yN) ∝
N∏
i=1

θyi(1− θ)n−yiθa−1(1− θ)b−1. (A.15)

It is now obvious that we can easily combine the components from the

likelihood and the prior,

p(θ|yN) ∝
N∏
i=1

θyi+a−1(1− θ)n−yi+b−1 (A.16)

= θ
∑

i yi+a−1(1− θ)
∑

i n−yi+b−1. (A.17)

Notice that this form of the posterior distribution has the same basic

form as a Beta distribution. That is, the posterior distribution of θ is,

p(θ|yN) ∝ Be(A,B) (A.18)

where A =
∑
i

yi + a− 1 (A.19)

B =
∑
i

n− yi + b− 1. (A.20)

This is the primary benefit of thinking carefully about our prior distri-

bution. If we pick a prior distribution which is conjugate to the likelihood, then

the posterior will have the same form as the prior but with new parameters

which are easily calculated from the data.

This example problem is continued in Figure A.2. In the left column

are two simulated datasets drawn from Binomial distributions with n = 4 and
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Figure A.2: Posterior estimation in the Beta-Binomial model. (Left) Samples
drawn from a Binomial distribution with n = 4 and θ = .8 (top) and θ = .5
(bottom). (Right) The resulting posterior distributions of θ.
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θ equal to 0.8 (top) and 0.5 (bottom). The right column shows the corre-

sponding posterior distributions for θ. In this example, the hyperparameters

of the prior distribution were both set to 1 which resulted in a flat prior dis-

tribution. Because of this flat prior, the peak of the posterior (MAP estimate)

corresponds exactly to what we would estimate by maximizing the likelihood

(ie. finding the best fit to the data). In addition to this point estimate, we also

have a quantification of the whole parameter space and would easily be able to

quantify parameter confidence and construct confidence intervals. Therefore,

by choosing a conjugate prior, calculating the full posterior distribution over

the parameters is achieved effortlessly.

I will describe one more example of a conjugate model which will also

serve to transition us toward more generally applicable computational meth-

ods. Imagine that we have used patch clamp recording in order to measure the

currents through a single ion channel. The transitions between open and closed

states should follow Markovian dynamics, which prescribes that the duration

of time spent in any state should be exponentially distributed (Colquhoun and

Hakes, 1981). From our single channel recording, we tabulate the durations of

each ”dwell-time” and are left with a set of exponentially distributed random

variables. It is our goal to estimate the corresponding timescale parameters

of each distribution. Previous authors have thoroughly established successful

methods for calculating these parameters using maximum likelihood methods

(Colquhoun and Hawkes, 1981), but I describe the Bayesian way of approach-

ing this problem.
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Again, we imagine the data are drawn from an exponential distribution

with unknown time scale parameter,

yi ∼ θe(−θy). (A.21)

Given some data yN , we want to estimate the posterior distribution

over θ. Recalling Bayes’ rule,

p(θ|yN) ∝
N∏
i=1

p(yi|θ)p(θ) (A.22)

=
N∏
i=1

θe(−θyi)p(θ). (A.23)

Again, we want to carefully choose p(θ) so that it combines usefully

with p(yi|θ). The conjugate distribution to an Exponential likelihood is the

Gamma distribution,

Ga(a, b) =
ba

Γ(a)
xa−1e(−xb). (A.24)

Combining likelihood and prior, we arrive at,
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p(θ|yN) ∝
∏
i

p(yi|θ)p(θ) (A.25)

=
∏
i

θe(−θy)
ba

Γ(a)
θa−1e(−θb) (A.26)

∝
∏
i

e(−θy)θa−1e(−θb) (A.27)

=
∏
i

θa−1e−θ(y+b) (A.28)

= θa+N−1e−θ(b+
∑

i yi). (A.29)

We see that the posterior distribution of θ is a Gamma distribution

with parameters that are easily calculated from the data.

p(θ|yN) ∝ Ga(A,B) (A.30)

where A = a+N (A.31)

B = b+
∑

yi. (A.32)

I now extend this model into a more interesting case which will lead into

our first computational method, Gibbs sampling. Instead of modeling the data

as drawn from a single Exponential distribution, consider that we now imagine

the data are drawn from a mixture of multiple Exponential distributions, a

common case for single ion channel recordings. We imagine that each mixture

has a distinct timescale parameter θ and mixture weight w. The data are

drawn from some number of distinct components as,
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yi ∼ w1e
−θ1y + w2e

−θ2y + ...+ wKe
−θKy (A.33)

=
K∑
j=1

wje
θjy. (A.34)

Without loss of generality, we focus on just a two-component exponen-

tial mixture for simplicity,

yi ∼ w1e
−θ1y + w2e

−θ2y. (A.35)

The task then becomes estimating the four resulting free parameters

from the data,

p(θ1, θ2, w1, w2|yN) ∝
N∏
i=1

p(yi|θ1, θ2, w1, w2)p(θ1, θ2, w1, w2). (A.36)

We wish to estimate a four-dimensional posterior distribution which

spans the parameter space of the two timescale parameters and the two weight

parameters. This kind of model will likely not have a simple closed form for

the posterior, no matter how clever we may try to be with conjugate priors.

However, we will be able to estimate the posterior distribution using a nu-

merical method called Markov chain Monte Carlo (MCMC) sampling. The

general strategy with MCMC is that while we may not be able to express a

simple form for the posterior distribution, we could approximate its proper-

ties if we can draw a large number of independent and identically distributed

166



(iid) samples from it. Importantly, even though we don’t know the posterior

distribution, we can draw iid samples by constructing a Markov chain whose

limiting distribution is the posterior distribution. Then, by simply simulating

this chain for many iterations, we draw many iid samples from the underlying

distribution. Generating a Markov chain with a desired limiting distribution

can be achieved in several ways, and I first describe Gibbs Sampling.

A.4 Gibbs Sampling

While we may not be able to devise a simple form for the posterior,

p(θ1, θ2, w1, w2|yN), we can, with some care, devise a simple form for the condi-

tional posterior of each parameter. As it turns out, this simple advance allows

us to estimate the full posterior distribution using an MCMC algorithm called

Gibbs Sampling (Geman and Geman, 1984; Gelfand and Smith, 1990). Before

returning to this model, I will describe Gibbs sampling in general.

Consider a general joint probability distribution between two random

variables, p(A,B). From the definition of conditional probability,

p(A|B) =
p(A,B)

p(B)
(A.37)

p(A,B) = p(B)p(A|B) (A.38)

p(A,B) ∝ p(A|B). (A.39)

Similarly, we could calculate the condition density with respect to the

other variable,
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p(B|A) =
p(A,B)

p(A)
(A.40)

p(A,B) = p(A)p(B|A) (A.41)

p(A,B) ∝ p(B|A). (A.42)

Thus, the joint distribution, p(A,B), is linearly proportional to both

conditional distributions, p(A|B) and p(B|A). This fact holds generally for

joint distributions over any number of random variables and is the basis of

Gibbs Sampling. The strategy is that while the joint distribution, p(A,B)

might have no simple closed form, we can likely derive a simple form of

each univariate conditional distribution. Generally, let p(θ1, ..., θK |x) be a

K-dimensional posterior distribution with no simple closed form. If each uni-

variate conditional distribution has a closed form such as p(θ1|θ2, ..., θK , x) ∝

F (θ1), then Gibbs sampling proceeds by sequentially sampling each parameter

conditioned on the previous samples of all other parameters. For each iter-

ation i of the algorithm, we draw the ith random sample of each parameter

according the univariate conditional distributions,

θi1 ∼ p(θ1|θi−12 , ..., θi−1K , x) = F (θ1) (A.43)

θi2 ∼ p(θ2|θi1, ..., θi−1K , x) = F (θ2) (A.44)

... (A.45)

θiK ∼ p(θK |θi1, ..., θi−1K−1, x) = F (θK). (A.46)
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Therefore, being able to draw samples from each univariate conditional

posterior allows us to construct a K-dimensional Markov chain which explores

the parameter space in proportion to the posterior probability.

I now return to the two-component exponential mixture model. Recall

that we decided we would be unable to devise a simple form for the four-

dimensional posterior distribution, p(θ1, θ2, w1, w2|yN). However, we will see

that it is straightforward to compute each conditional posterior, p(θ1|θ2, w1, w2, yN)

and so on (for brevity, I now adopt the notation p(θ1|...) to denote a conditional

probability with respect to all other random variables in the model).

First, we employ a trick known as data augmentation by which we make

the model more complicated in order to simplify the sampling scheme. In

particular, I add new latent indicator variables s1, s2, ..., sN (one for each data

point) which serve to label to which cluster a particular data point belongs.

For our two component mixture model, each indicator variable points to one

of the two mixture components, si ∈ {1, 2}. Our posterior distribution now

has many parameters,

p(θ1, θ2, w1, w2, s1, ..., sN |yN) ∝
N∏
i=1

p(yi|...)p(θ1, θ2, w1, w2, s1, ..., sN), (A.47)

but in the process of MCMC sampling, we marginalize out the latent

variables si that we introduced,
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p(θ1, θ2, w1, w2|yN) =

∫
p(θ1, θ2, w1, w2, s1, ..., sN |yN)ds1ds2...dsN . (A.48)

Therefore, even though we made the model more complicated by adding

the si, we return to the desired model when we marginalize out the latent

variables, which will be acheived with MCMC sampling of those parameters.

For simplicity, we can assume that the prior distribution for each pa-

rameter is independent,

p(θ1, θ2, w1, w2, s1, ..., sN |yN) ∝
N∏
i=1

p(yi|...)p(θ1)p(θ2)p(w1)p(w2)p(s1)...p(sN).

(A.49)

To create our Gibbs Sampler, we need the conditional posterior distri-

bution of each parameter, which is composed only of those components from

the likelihood and prior that are relevant to each parameter. We seek,

p(θj|...) = p(yi|...)p(θj) (A.50)

p(wj|...) = p(yi|...)p(wj) (A.51)

p(si|...) = p(yi|...)p(si). (A.52)

Relying on our previous results, we simply need to devise a conjugate

prior for each parameter, and we will be able to easily sample from the corre-

sponding conditional posterior. Now that we have the latent indicators si, let
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Aj be the set of all i such that si = j. For each component, j, we already know

a good conjugate model for estimating θj: the Exponential-Gamma model.

Thus,

p(θj|...) ∝
∏
i∈Aj

wje
−θjyiGa(a, b) (A.53)

= Ga(a+ |Aj|, b+
∑
i∈Aj

yi), (A.54)

where |A| denotes the number of elements in the set A. For each indi-

cator variable, we need to sample si from the clusters {1, 2} with probability

equal to the posterior probability that data point i was drawn from each

cluster. If we assume a flat prior on si, then this calculation boils down to

calculating the likelihood that data point i was drawn from each cluster,

p(si = 1|...) ∝ p(yi|...)p(si) (A.55)

∝ p(yi|...) (A.56)

= w1e
θ1yi (A.57)

and

p(si = 2|...) ∝ p(yi|...)p(si) (A.58)

∝ p(yi|...) (A.59)

= w2e
θ2yi (A.60)
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We then draw si from a Multinomial distribution with probability vec-

tor ~p = (p(si = 1), p(si = 2)),

si ∼ Mult(p(si = 1), p(si = 2)). (A.61)

Thus, for each data point i we sample the indicator variable according

to which component is likely to have generated yi, conditioned on the current

values of θ1, θ2, w1, w2.

The last part of our sampling scheme is the cluster weights wj, for

which we will encounter a new conjugate prior model. Note that the cluster

indicator variables si are drawn from a Multinomial distribution and that the

weights wj for all the clusters must sum to 1. Consider the joint distribution

of all the cluster weights (here, just two),

p(w1, w2|...) ∝ p(yi|...)p(w1)p(w2). (A.62)

To sample the cluster weights, we take advantage of the conjugacy

between a Multinomial likelihood and a Dirichlet prior. The Dirichlet distri-

bution is a distribution over a vector of probabilities, which must sum to 1.

A K-dimensional Dirichlet distribution is defined on the (K − 1)-dimensional

simplex, which ensures that the K elements drawn from this distribution will

sum to 1. The Dirichlet distribution, with parameters α1, ..., αK is,
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Dir(α1, ..., αK) =
1

B(~α)

K∏
j=1

x
aj−1
j . (A.63)

This distribution, while perhaps unfamiliar, is easily seen as a general-

ization of the Binomial-Beta model we used earlier. In that instance, we were

interested in a binomial likelihood which quantified the occurence of binary

events. In particular, we wanted to know the parameter θ, the probability of

a successful event. In that case, we had two possible outcomes (success or

failure), each with probability θ and (1− θ), respectively. As the Multinomial

distribution is a generalization of the Binomial to situations where we sample

from many possible outcomes, the Dirichlet distribution is a generalization of

the Beta, and quantifies the vector of probabilities of each outcome. Using

this as a prior over the weights w1, w2 results in a Dirichlet posterior,

p(w1, w2|...) ∝ Dir(|A1|+ α1, |A2|+ α2). (A.64)

With this, we have all the ingredients we need for our Gibbs Sam-

pler. For each iteration of the algorithm, we draw random samples for each

parameter as,

θj|... ∼ Ga(a+ |Aj|, b+
∑
i∈Aj

yi) (A.65)

w1, w2|... ∼ Dir(|A1|+ α1, |A2|+ α2) (A.66)

si|... ∼ Mult(p(si = 1), p(si = 2)). (A.67)
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Figure A.3: A finite Exponential mixture model. (Top) Simulated data drawn
from a mixture of two Exponential distributions. Data are plotted logarith-
mically for visualization. (Bottom) Result of using Gibbs sampler to infer the
parameters of a two-component mixture model. Data points are colored cor-
responding to which component they are likely to have been generated from.
The probability density of each component is shown and the sum of both
densities is shown in gray and matches well with the histogram.
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I next demonstrate this MCMC algorithm with simulated data. The

data will be drawn from a mixture of two exponential distributions with

timescale parameters θ1 = 1 and θ2 = 100 and with w1 = .25 and w2 = .75.

The top of Figure A.3 is a histogram of the logarithm of each data point, and

a rug plot of all the data is shown below. When visualized in this way, we can

be sure that there are two distinct clusters within the data. One way to view

the task of fitting these data is that we need to decide from which cluster each

data point was drawn and then use the cluster assignments to estimate each

θj and wj. That is, we want the assignments of the si to yield high posterior

probability. The Gibbs sampling scheme we just laid out will achieve this, and

the result of this sampler is visualized in the bottom of Figure A.3. Here the

data are shown again, but now each datapoint is labeled according to which

cluster it is assigned: there is a blue cluster and a red cluster. These cluster

labels correspond to just one iteration of the Gibbs sampler and thus repre-

sent a high posterior explanation of the data, but not the only one. Recall

that we want to explore all the values of the parameters that yield good fits

to the data, we want to explore the full posterior distribution. By sampling

many cluster label assignments, all which yield high posterior probability, we

marginalize out the si and yield accurate estimates of the total uncertainty in

the model parameters that we’re actually interested in.

Figure A.4 shows the result of our Gibbs sampler for each of the model

parameters of interest: θ1, θ2, w1, w2. The top row shows the MCMC tra-

jectories for the two dimensions of the Markov chain corresponding to the θ
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parameters. Note that on the first iteration of MCMC, the parameters are

initialized somewhere arbitrary in the parameter space, but quickly converge

to a region of the parameter space that yields high posterior probability. This

process of ”burn-in” will be discussed in greater detail in the next section. Af-

ter the Markov chain has converged, subsequent transitions yield iid samples

from the posterior distribution. For each parameter, the positions of the chain

can be aggregated together to approximate the marginal posterior distribu-

tion of each parameter, and this is shown in the second row of Figure A.4.

This histogram of MCMC samples approximates the underlying marginal pos-

terior and provides an accurate estimate of the parameter values and their

uncertainty. Along with each histogram, the true parameter value is plotted

as a vertical line and we see that our posterior distributions, from which we

might construct a 95% confidence interval, accurately capture the underlying

parameter values. The bottom half of Figure A.4 similarly shows the MCMC

trajectories and marginal posterior distributions for the weight parameters w1

and w2. Again, we see that our MCMC estimate of the posterior distribution

accurately captures the true parameter values and provides a natural way to

quantify parameter confidence.
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Figure A.4: Application of Gibbs sampling to the Exponential mixture data
shown in Figure A.3. For each of the four model parameters (θ1, θ2, w1, w2),
the MCMC trajectories and marginal posterior distributions are shown.
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Using MCMC, we are able to draw iid samples from a posterior dis-

tribution which is unknown to us, and therefore we can effectively estimate

posteriors of any dimensionality. For Gibbs sampling, we only need a conve-

nient form for each conditional posterior distribution, and the full posterior

can be easily estimated. For many inference settings, this will be adequate

as conjugate models have been devised for many kinds of distributions. Even

very complicated probability models can be deconstructed into simple con-

ditional posteriors for Gibbs sampling. For example, Hidden Markov Mod-

els tend to have many free parameters describing transitions dynamics and

emission distributions (Rabiner, 1989). However, with useful data augmenta-

tion, the relevant conditional posteriors can be easily calculated and efficient

Gibbs sampling scheme devised (Robert et al., 1993; Scott, 2002). This has

already been applied in biophysical settings including modeling ion channel

gating (Rosales, 2004; Siekmann et al., 2011). The Gibbs sampler, despite its

simplicity and elegance, is inevitably limited to those models where we can

calculate conditional posteriors. In some settings, this will not be possible and

more general MCMC methods must be used.

A.5 Metropolis-Hastings

As a motivating example, I will consider the very general problem of

curve-fitting. In common biophysical investigations, some theory is evaluated

by its ability to explain data obtained from carefully controlled experimenta-

tion. Our model, with parameters θ1, θ2, ..., θK denoted ~θ, makes some pre-
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diction about how some measurable signal might look when examined with

respect to some controlled variables. That is, our model prescribes some func-

tion f(~θ, x) which specifies how the observable signal f should depend upon

model parameters ~θ and independent variables x.

As a concrete example, imagine we are modeling the activation of a

voltage-gated ion channel. A very simple model would be to assume the chan-

nel can exist in a conducting and non-conducting state, and the equilibrium

between these states is perturbed by transmembrane voltage. Suppose we have

measured a conductance-voltage (G-V) curve for this channel and want to fit

it to a two-state Boltzmann distribution which quantifies the probability of the

channel opening as a function of voltage. In this case, the independent variable

is voltage, and our two-state model predicts that our G-V curve should follow

the form,

f(a, b, V ) =
1

1 + exp(−V + a)b
, (A.68)

where parameters a and b might have some biophysical interpretation.

Once we have made some measurements about how the channel activates at

various controlled voltages, our goal is to find a good fit between the above

equation and our data. That is, we want to fit the data by exploring the pa-

rameter space of a and b until the model prediction adequately matches the

measured data. We might embark on this curve-fitting endeavor by search-

ing the parameter space for the point which minimizes the error between the
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model and the data (Levenberg, 1944; Marquardt, 1963), and we would thus

accept the resulting values of a and b as indicative of the true values of the

underlying biophysical parameters. However, it has been noted that even for

simple biophysical models, achieving a good fit to the data provides no guar-

antee that the recovered parameter estimates are accurate due to the pitfall of

parameter non-identifiability (Hines et al., 2014). Therefore, we might prefer

to take a Bayesian approach and seek not just a point estimate of parameters

a and b, but instead to quantify the entire posterior distribution, p(a, b|y).

In order to estimate the posterior distribution of our biophysical model,

we will rely upon another MCMC methods called the Metropolis-Hastings

algorithm. First, we decide that our observable signal, which is specified by our

model in the form of some f(~θ, x) is also corrupted by the inevitable presence of

experimental noise. For our example, we assume that f(a, b, V ) is accompanied

by the presence of Normally distributed variability. This assumption isn’t

vital, any noise model could be used, but it seems reasonable in practice and

is an assumption at the heart of existing curve fitting techniques such as error-

minimization and maximum-likelihood (Seber, 2003b). That is, we assume

that each data point yi arises as a combination of a deterministic function

f(a, b, V ) and some noisy process with unknown variance,

yi ∼ f(a, b, Vi) +N(0, σ2). (A.69)

Given this, our likelihood function is simply a Normal distribution cen-
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tered at f and with variance σ2,

p(yi|...) = N(f(a, b, Vi), σ
2). (A.70)

We assume that each data point arises from f and some iid noise, so

the posterior distribution is,

p(a, b, σ2|yN) ∝
N∏
i=1

N(f(a, b, Vi), σ
2)p(a)p(b)p(σ2). (A.71)

When viewed in this way, we can start to guess that we won’t be able

to use Gibbs sampling here. It would not be straightforward to devise a

conditional posterior, say p(a|...), since our model parameters of interest are

related to our likelihood only through a nonlinear function f . Therefore we

have to turn to a more general method of MCMC.

Originally proposed by Nicholas Metropolis and colleagues to solve high

dimensional problems in particle physics, what is now known as the Metropolis-

Hastings algorithm is a very general tool for estimating probability distribu-

tions (Metropolis et al. 1953; Tierney, 1994). For simplicity, I’ll describe

only a special case of the Metropolis-Hastings method, called the Metropo-

lis random walk. Recall that our posterior distribution of interest has three

parameters: θ = {a, b, σ2}. We will construct a Markov chain whose limit-

ing distribution is the posterior p(a, b, σ2|yN). Using the Metropolis random

walk, this Markov chain evolves with the following rules. At iteration i of

181



the algorithm, the Markov chain is in location θi of the parameter space. We

generate a proposal movement of the chain by taking a random walk from θi

to a new location θ̃. If the proposal point has higher posterior probability

than θi (ie. if p(θ̃|...) > p(θi|...)), then we accept it and add it to the chain:

θi+1 = θ̃. If p(θ̃|...) < p(θi|...), then we reject θ̃ with probability α where α

is the decrease in posterior probability: p(θ̃|yn)/p(θi|yN). If the proposal is

rejected, the Markov chain is extended with its current location, θi+1 = θi.

More succinctly, we can describe a single iteration of the simple Metropolis

random walk algorithm as follows,

1. θ̃ ∼ θi +N(~0,Σ) (A.72)

2a. if p(θ̃|yN) > p(θi|yN) : θi+1 = θ̃ (A.73)

2b. else draw u ∼ U [0, 1] (A.74)

if u <
p(θ̃|yN)

p(θi|yN)
: θi+1 = θ̃ (A.75)

else : θi+1 = θi (A.76)

where Σ is a covariance matrix of our choice that specifies the characteristics

of the random walk portion of the algorithm.

Let’s break down, in a little more detail, what this algorithm does and

how it works. The first component is that we attempt take a random walk

in the parameter space, and if the proposal point leads to improved posterior

probability then we keep it. This by itself would be a possible (albeit awfully
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slow) optimization method for finding the maximum of the posterior. But re-

call that the goal isn’t to find a point estimate of the parameters, but instead

to create a Markov chain that explores the whole parameter space in propor-

tion to posterior probability. Thus, even if θ̃ leads to a decrease in posterior

probability, we still might keep it. And the probability with which we keep it

is exactly the magnitude of the difference in posterior probability between θi

and θ̃. Suppose that θi is in an area of high posterior probability and that any

random walk away from θi is likely to an area of lower posterior probability.

We want the chain to be able to visit areas of lower posterior probability and

this is eactly what the accept/reject rule achieves. If p(θ̃|yN) is two-fold less

than p(θi|yN), then we only accept θ̃ with probability 1
2
. And if θ̃ is an area of

much lower posterior probability, say 100-fold worse, then would only accept

θ̃ with probability 1
100

. In the algorithm above, we draw uniformly distributed

random variables and compare them to p(θ̃|yN)/p(θi|yN) as a particularly sim-

ple way of implementing this kind of accept/reject rule. Therefore the chain

is able to explore all areas of the parameter space and not just areas of higher

posterior probability than its current position. Further, the probability that

the chain visits a particular location is exactly the posterior probability at that

point in the parameter space, and we have successfully constructed a Markov

chain whose limiting distribution is the posterior distribution.

It is important to appreciate what this algorithm has gained us. We

decided that we would be unable to come up with a simple closed form for

the desired posterior, p(a, b, σ2|yN), or even any conditional distributions for
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Gibbs sampling. Using the Metropolis random walk, we can estimate the pos-

terior distribution for any model for which we can calculate the likelihood and

the prior. This is a major advance. While we may not have a simple form for

p(yi|θ)p(θ) for the whole parameter space, if we decide on a particular likeli-

hood and prior, then it is trivial to compute the posterior probability for any

particular parameter value θi, p(yi|θi)p(θi). In our example, we chose a Nor-

mal distribution for the likelihood and we can choose any kind of prior that

we want for each parameter. Thus, we very easily walk around the parame-

ter space, performing simple calculations of posterior probability and making

accept/reject decisions and the result is iid samples from the posterior distri-

bution.

Let’s return to the example of G-V curves for a demonstration of the

Metropolis random walk. At the top of Figure A.5 is a simulated activation

curve generated with a = −50 and b = 0.05 and with added Gaussian noise

with σ = .02. We can use this data to estimate the posterior distribution

p(a, b, σ2|yN) with the algorithm described above. In practice, we can imple-

ment the random walk in the full 3-dimensional space (as described above), or

we can treat each parameter sequentially (within each iteration) and generate

θ̃ for a single parameter with a one dimensional random walk. Both approaches

will work but there may be slight effects on chain mixing (see below) for some

models. The result of MCMC is shown in Figure A.5 for the two parameters

of interest, a and b. At left is the trajectory of each parameter of the course of

MCMC and we see that while the parameters are initialized arbitrarily, they
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quickly converge to areas of higher posterior probability and explore only a

small region of the parameter space. At right are histograms of the marginal

posterior distributions along with the true parameter values plotted as verti-

cal lines. Using the Metropolis random walk, we are able to easily recover an

accurate estimate of the relevant parameters and their uncertainties. Impor-

tantly, to do this we only need to be able to calculate the expectation of the

observable signal, f(V |a, b), and the likelihood, N(f |0, σ2). Therefore, this

approach can be used very generally in nearly all modeling endeavors.
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Figure A.5: Demonstration of Metropolis-Hastings algorithm to analyze ion
channel activation data. (Top) Simulated G-V curve with added Gaussian
noise. (Left) MCMC trajectories for model parameters a and b. (Right)
Marginal posterior distributions of each parameter with the true values shown
as vertical lines.
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I now mention some practical details that need to be taken into consid-

eration when implementing Metropolis-Hastings type methods. Let’s revisit

our example problem where we are trying to estimate parameters a and b.

Notice that the parameter trajectories in Figure A.5 start off in bad areas of

the parameter and move toward areas of high posterior probability where they

eventually converge. The time period before this convergence is termed the

burn-in as the Markov chain relaxes toward its actual limiting distribution.

Parameter samples during the burn-in are discarded, and only samples from

the true limiting distribution are iid samples from the posterior. This raises

the important question of how to know when the chain has converged and

begun providing legitimate iid samples from the posterior. Most simply we

could just look at the trajectories - in Figure A.5, things certainly seem to

have converged by 200 iterations, so that’s probably a good cutoff. Naturally,

more rigorous methods are desirable and many have been developed (Gelman

and Rubin, 1992; Geweke, 1992), though I won’t describe any in detail. Once

we are confident (by whatever means) that the chain has converged, all subse-

quent motions of the chain yield iid samples from the posterior which we can

use for parameter estimation.

There are important properties of the Metrpolis random walk that can

affect chain mixing and convergence. For simplicity, let’s suppose that our

algorithm is implemented such that within each MCMC iteration, we generate

a proposal θ̃ and do accept/reject with each parameter sequentially. At each

iteration, and for each parameter, we have the same basic algorithm, which
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for parameter a might look like,

1. ã ∼ ai +N(0, η) (A.77)

2a. if p(ã|yN) > p(ai|yN) : ai+1 = ã (A.78)

2b. else draw u ∼ U [0, 1] (A.79)

if u <
p(ã|yN)

p(ai|yN)
: ai+1 = ã (A.80)

else : ai+1 = ai. (A.81)

The proposal points are drawn from ai plus a Normally distributed ran-

dom variable with standard deviation η. This Normal distribution, N(0, η),

which we might call the transition kernel of the random walk, can have an

important impact on the Markov chain, which is explored in Figure A.6. Con-

sider that η is very large, the case that is shown for the parameter trajectory

at the top of Figure A.6. In this case, every proposal point ã is likely to be

in a very different area of the parameter space than ai. This has two major

effects. First, notice that the Markov chain moves very quickly from the initial

position to an area of high posterior probability in just a few iterations. This

is because each iteration encompasses very large potential step sizes, since η

is large. Having reached the posterior mode very quickly, the large step size

is actually a detriment to posterior estimation. Consider that all subsequent

proposals ã are likely to be very far away from ai and will probably result in

much lower posterior probability. It is therefore likely that ã will be rejected

and the chain will stay in the same place. With large η, this rejection tends
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to happen iteration after iteration since many ã have very low posterior prob-

ability. The top trace in Figure A.6 shows long periods with no transitions

and we get a small number of unique estimates of the parameter. The theory

underlying MCMC guarantees that any Markov chain constructed with the

Metropolis random walk will yield iid samples from the posterior eventually

(Tierney, 1994), but with a poorly mixing chain we would have to simulate for

a much longer time to get a useful sampling of the posterior.

We might be tempted to always avoid this problem by choosing η to be

very small, but of course this strategy has its own drawbacks. This situation

is shown in the middle trace of Figure A.6. We see that there are no long

periods of rejections, in fact, there may be not a single rejection in this entire

MCMC run. With small step sizes, all proposals ã are very close to ai and

thus have comparable posterior probability and are almost always accepted.

But looking at this trace, we see the major shortcoming of η being too small.

With small steps sizes, it takes an incredibly long time to move through the

parameter space. In the middle trace, the chain barely makes it from the

initial position to the posterior mode within the duration of the simulation.

And once it reaches the area of high posterior probability, it moves very slowly

through the parameter space and with high autocorrelation (something to be

avoided). We are again in a situation where we would have to run an MCMC

simulation for a very long time in order to get an adequate exploration of the

posterior.

The solution, naturally enough, is some sort of indefinable in-between
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that depends on personal preference. A pretty good trace is shown at the bot-

tom of Figure A.6. It moves quickly to the posterior mode, and once within

the mode it still makes punctuated jumps around the parameter space sepa-

rated by an adequate amount of rejection iterations. A through discussion of

these practical considerations can be found in (Gilks et al., 1996a). Nonethe-

less, with adequate sampling, we can use the Metropolis-Hastings method very

generally to aid in estimation problems for biophysical systems.

A.6 Conclusions

These Bayesian methods provide a very general paradigm for parame-

ter inference in biophysics. With simple problems, we can calculate posterior

distributions directly by using conjugate models. With more complex mod-

els, we can easily turn to computational methods for posterior inference, such

as Gibbs sampling or the Metropolis-Hastings algorithm. Additionally, more

sophisticated sampling methods exist which will be useful for exploring very

high-dimensional posterior distributions (Neal, 2010; Girolami et al., 2011).

The use of Bayesian methods for parameter inference gains us three advan-

tages. First, it allows us to express parameter uncertainty as probability, a

much more natural notion than that of the Frequentist sampling distribution.

Second, we gain a simple mechanism to incorporate into the inference process

any prior information we might have. Most importantly, Bayesian inference

(with the aid of MCMC) gives us a generalizable method of rigorously address-

ing parameter inference and identifiability for arbitrarily complicated models.
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