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Methods and Approaches

I N T R O D U C T I O N

A major goal of biophysics is to understand the physical 
mechanisms of biological molecules and systems. The 
general approach to rigorously evaluate mechanistic hy-
potheses involves comparison of measured data from 
well-controlled experiments to the predictions of quan-
titative physical models. A candidate model (and the 
mechanism that it implies) is rejected if it does not quan-
titatively fit all available data. For models that agree with 
the data, the fits provide estimates for the model param-
eters, which represent system properties of interest that 
cannot be measured directly, such as binding affinities, 
cooperative interactions, kinetic rate constants, etc. An 
extensive literature exists concerning methods for find-
ing sets of parameter values that provide the “best fit” of 
model to data (Jennrich and Ralston, 1979; Johnson, 
2010; Johnson and Faunt, 1992), but the important 
issue of determining and characterizing the confidence 
of parameter estimates in models with several, usually 
nonindependent, parameters is more challenging and 
less well developed. Here, by way of examples from fairly 
simple and common biophysical models, we consider 
two related issues: (1) For a given model and a given 
type of data, are the parameters of a model uniquely con-
strained by the measurements? (2) How confident can 
one be in the parameter values obtained by fitting a 
model to data?

To illustrate the issues of confidence in parameter estima-
tion, we consider ligand activation of the macromolecular 
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receptor calmodulin (CaM). CaM plays a central role  
in many biological signaling processes and has been 
studied extensively (Cheung, 1980; Cheung et al., 1978; 
Hoeflich and Ikura, 2002). This protein has four non-
identical EF hand–binding sites for calcium ions. Upon 
activation by calcium, CaM can interact with over 300 
known effector proteins (Crivici and Ikura, 1995; Yap  
et al., 2000). Calcium-binding data for CaM are commonly 
analyzed using a four-site sequential binding model 
(Fig. 1 A, top), in which the ligand-binding events are 
quantified by the macroscopic equilibrium constants 
K1, K2, K3, and K4 for the four binding steps. Mechanisti-
cally, these four parameters reflect intrinsic binding af-
finities and potential cooperative interactions between 
the sites, as originally proposed by Adair (1925) to de-
scribe cooperative oxygen binding to hemoglobin. Fig. 1 A 
(bottom; adapted from Stefan et al., 2009) shows calcium-
binding curves from several studies (Crouch and Klee, 
1980; Porumb, 1994; Peersen et al., 1997); Fig. 1 B shows 
the corresponding estimates for parameters K1 through 
K4 reported by these groups and those from three re-
lated studies (Haiech et al., 1981; Burger et al., 1984; 
Linse et al., 1991). Strikingly, although the data from 
these groups are in good agreement, the parameter es-
timates differ significantly: for some parameters, the re-
ported estimates vary >25-fold.

What underlies this large uncertainty in binding pa-
rameter estimates? The problem may be intrinsic to data 
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402 Parameter identifiability in nonlinear models

data (1% RMS noise) lack the power to distinguish be-
tween mechanisms with very different binding affinity 
and/or cooperativity. When fitting data, not only the best 
fit but also the uniqueness of the fit must be determined 
to understand the confidence one can have in the esti-
mates. Otherwise, the uncertainties in model parameter 
values may be so large (as in Fig. 1 D) that they pre-
clude even qualitative insights into the mechanism of 
the process.

If fitting a model to data is to yield accurate and 
meaningful parameter estimates, the complexity of the 
model must be commensurate with the constraining 
power of the data. We show that this requirement is often 
not met when typical models are used to analyze com-
mon types of experimental data such as binding curves 
and kinetic time series. We present multiple methods 
for assessing the uniqueness of parameter estimates  
obtained from fitting experimental data. For some sim-
ple models that allow analytical solutions, we describe  
a method for determining the maximum number of  
parameters that can be meaningfully quantified by re-
gression analysis. This work builds upon previous in-
vestigations (Bellman and Astrom, 1970; Reich, 1974; 
Straume and Johnson, 2010), and such methods are ef-
fective for simple models. However, any biophysically 
realistic models of protein signaling and conforma-
tional change, such as ion channel gating, will not be 
tractable. Therefore, a general method is needed for 
estimating parameters accurately regardless of model 
complexity. To this end, we present a framework based 

fitting, such that a given binding curve is fit arbitrarily 
well by many combinations of parameter values, regard-
less of data quality. Alternatively, it could be a conse-
quence of noise in the data, in which case more precise 
experimentation may place tighter constraints on the pa-
rameter values. We investigated these possibilities using 
simulated data. A synthetic binding curve with no added 
noise was generated using the binding parameter esti-
mates from a single study (Linse et al., 1991) (smooth 
curve in Fig. 1 C). Systematic exploration of the para
meter space of the sequential binding model revealed that 
no single set of parameter values provides a clear best fit 
to the synthetic data. Rather, many parameter sets, cover-
ing a wide range of values for each parameter, fit the data 
with <1% root-mean-squared (RMS) deviation. (This value 
is a conservative threshold for identifying “excellent” fits, 
as real binding measurements are unlikely to surpass this 
noise criterion.) Two representative excellent fits are 
shown in Fig. 1 C, and the corresponding parameter val-
ues for these fits are shown in Fig. 1 D. Note that the scale 
of the vertical axis in Fig. 1 D spans nine orders of magni-
tude, indicating that parameter sets with very different 
apparent affinities yield similar binding curves. For the 
set of points shown as squares in Fig. 1 D, the equilib-
rium constants K1–K4 are nearly equal. For the parameter 
set shown as circles in Fig. 1 D, the apparent affinity for 
each binding event is very different, consistent with large 
differences in binding affinity or strong cooperative in-
teractions between the sites. Comparison of the two fits 
shown in Fig. 1 C indicates that even high quality binding 

Figure 1.  Estimating the parameters of a 
four-site binding model. (A) CaM-binding data 
from multiple experimental groups (adapted 
from Stefan et al., 2009). Mi refers to CaM 
with i-bound calcium ions. (B) Parameters ob-
tained by fitting the sequential binding model 
in A to experimental data from five groups. Pa-
rameters are from Linse et al., 1991 (squares), 
Haiech et al., 1981 (rhombi), Porumb, 1994 
(circles), Burger et al., 1984 (triangles), and 
Crouch and Klee, 1980 (inverted triangles). 
(C) Synthetic, noiseless binding data (solid 
curve) calculated using parameters from Linse 
et al. (1991). (D) Two distinct parameter sets 
that yield excellent fits to the data. For param-
eters shown as squares, all binding sites have 
nearly identical affinity, consistent with weak 
cooperativity. The parameters shown as circles 
are consistent with strong cooperative interac-
tions between the binding sites. The binding 
curves generated from these parameters are 
plotted in C as circles and squares.
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obtain a best-point estimate for the parameters and to 
construct confidence intervals defining the uncertainty 
in the parameters. For many models of biophysical in-
terest, however, multiple parameter combinations (often 
with very different values) produce nearly identical ob-
servables. In these cases, the assumptions of nonlinear 
regression theory do not hold, and we lose the statisti-
cal assurance that our point estimates of the parameters 
are close to the true values. We next use simple example 
models to investigate when such issues arise and to dem-
onstrate that this problem may occur frequently in bio-
physical investigations.

Two-site, three-parameter binding model: A case  
of structural non-identifiability
Consider a cooperative model of ligand binding to a re-
ceptor with two inequivalent binding sites (Fig. 2 A). The 
microscopic association equilibrium constants of the 
sites are denoted KI and KII, and an additional coopera-
tivity parameter (F) quantifies the degree to which bind-
ing events at one site can enhance (or hinder) binding at 
the other site. Note that there is only one free parameter for 
cooperativity because of the detailed balance constraint. 
A simulated binding curve is shown in Fig. 2 B, which 
was generated with parameters {KI, KII, F} = {500 µM1, 
500 µM1, 1}. A second binding curve is also shown, gen-
erated with parameters {KI, KII, F} = {997.5 µM1, 2.5 µM1, 
100}. Although these curves were generated from very 
different parameter values, they overlay exactly. How is it 
that multiple points in the parameter space of this model 
can yield identical binding curves?

in Bayesian inference that uses Markov chain Monte 
Carlo (MCMC) sampling. By providing distributions of 
parameter values consistent with the available data, this 
method yields accurate estimates of model parameters 
(and their uncertainties) and can be used to determine 
whether those estimates are unique. In addition, the 
method possesses significant computational advantages 
over approaches that sample error surfaces exhaustively.

M A T E R I A L S  A N D  M E T H O D S

Simulations and figures were generated using Matlab and R.

R E S U L T S

In the following sections, we explore the reliability of 
parameter estimates obtained by fitting various models 
to common types of biophysical data. Experimental 
data are generally fitted using regression methods. The 
theory for nonlinear regression assumes that there is a 
point in the parameter space that yields a minimum 
local (although hopefully global) error between model 
and data. Furthermore, it is assumed that the error con-
tours surrounding this point are well approximated by 
ellipsoids (this geometry stems from a quadratic error 
function; Seber and Lee, 2003; Seber and Wild, 2003). 
When these conditions hold, we have strong statistical 
guarantees that the true parameter value is located 
within some bounded interval from our estimated value. 
A variety of optimization methods can then be used to 

Figure 2.  Parameter estimation for a two-site coop-
erative binding model. (A) Diagram of a model that 
assumes two binding sites with microscopic associa-
tion constants KI and KII, and cooperativity factor F. 
(B) Two parameter sets with very different values 
yield identical simulated binding curves. Parameter 
set A: {KI, KII, F } = {500 µM1, 500 µM1, 1}; param-
eter set B: {KI, KII, F } = {997.5 µM1, 2.5 µM1, 100}. 
For parameters A, the binding sites have identical 
affinity and weak cooperativity, whereas for param-
eters B, the binding sites have distinct affinities and 
strong positive cooperativity. (C) Log-error surface  
of a region of the F-KII parameter space. The curve 
generated from parameters A was used as a refer-
ence curve. Binding curves were calculated for var
ious points in the parameter space, and the total 
error between the two curves was computed. Areas 
of lighter shading correspond to areas of less error. 
The minimum error estimate of the parameters de-
fines a curve through the parameter space and not a 
point estimate. (D) MCMC samples drawn from the 
joint posterior distribution of KI and F. The curved 
structure of the posterior distribution indicates that 
the model’s parameters are not identifiable using 
this binding data.
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observable signal (y) is the fraction of sites occupied by 
ligand at concentration x, then

	 y x
a x a x a x
a x a x a x

( ) = + +
+ + +
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2

2

2 1( )
. 	  (1)

If we can cast the observable as a linear system of the 
model parameters, then we can simply use linear regres-
sion for parameter inference. Multiplying both sides of 
Eq. 1 by the denominator of the right-hand side linear-
izes the parameters:
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We proceed to find a*, an optimal estimate of the pa-
rameters, by minimizing the error between the model 
and the data. For our cost function, S, we use the sum of 
the squared error between observations yi and model 
predictions y(xi):
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The optimal estimate of the parameters is obtained by 
minimizing S. The partial derivatives of S with respect to 
the components of the parameter vector a are:
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Setting all of these derivatives to zero and rearranging 
yields a linear system in a:

	 Xa R* = , 	  (2)

where
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Here, RT refers to the transpose of vector R. The design 
matrix, X, is given by

We used the smooth curve in Fig. 2 B as simulated data 
(without added noise) and explored the values of param-
eters F and KI systematically (Fig. 2 C). For every point in 
this grid, the values of F and KI were fixed, and the third 
parameter (KII) was varied to generate the best fit to the 
reference curve using nonlinear least-squares regres-
sion (Levenberg, 1944; Marquardt, 1963). The residual 
sum-squared-error between the model and the data were 
then determined for each {F, KI} pair. This error surface 
is represented in Fig. 2 C, with lighter shading corre-
sponding to lower total error. No single combination of 
parameter values in this surface provides a best fit to the 
reference curve. Rather, a vast contour through the pa-
rameter space yields equally good fits to the synthetic data. 
The minimum error contour (lightest color in Fig. 2 C) 
extends infinitely in both directions of the parameter 
space, even as the total error approaches zero. The shape 
of this contour illustrates how the parameter values com-
pensate systematically over wide ranges to fit the data. 
(Note that the true value of KI [500 µM1] is far to the 
right of the plot shown at this scale.) An experimental 
scientist confronted with the error surface in Fig. 2 C 
would reach several discouraging conclusions: (a) find-
ing a good fit of the cooperative model to typical binding 
data provides no guarantee that the inferred parameter 
values are close to the correct values; (b) the range of 
parameter values consistent with an exact fit to an ex-
perimental binding curve is infinite; and (c) more care-
ful experimentation to reduce the noise in the data will 
not improve matters.

Situations in which fitting a model to data does not 
yield unique and optimal parameter estimates are well-
documented in the control theory literature (Bellman 
and Astrom, 1970; Cobelli and DiStefano, 1980; Walter 
and Pronzato, 1997). The parameters of the model in 
Fig. 2 are not structurally identifiable: there is not enough 
constraining power, even in noiseless data, to enable a 
unique estimate of their true values. It is easy to imagine 
that correlations between the numerous parameters in 
complex models could yield non-unique fits to data. 
However, the results in Fig. 2 illustrate that interactions 
between the three parameters in a very simple model 
can be so effective that fitting of high quality data pro-
vides little meaningful constraint on the parameter  
values. How can we determine whether a model’s pa-
rameters are structurally identifiable when constrained by  
a measurement?

Rank-deficient regression
When the experimental observables of a system can be 
expressed analytically in terms of the model parame-
ters, the data fitting problem can be cast in closed form, 
and simple methods can be used to test for parameter 
identifiability (Seber and Lee, 2003). Returning to the 
model of Fig. 2 A, we define a parameter vector with 
components a1 = KI, a2 = KII, and a3 = FKIKII. If our 
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Two-site, two-parameter binding model: A case  
of practical non-identifiability
Demonstrating that a system’s design matrix is full-rank 
is a necessary, but not sufficient, condition for ensuring 
that the model’s parameters can be uniquely estimated 
from experimental data (Jacquez and Greif, 1985; Faller 
et al., 2003; Raue et al., 2009). Consider the model de-
picted in Fig. 3 A for a two-site receptor. This sequential 
binding model (which is a reduced version of the four-
site model in Fig. 1 A) assumes that the two singly oc-
cupied binding configurations are equivalent, and has 
only two macroscopic affinity parameters, which quan-
tify the first and second binding steps. It is straightfor-
ward to show that the design matrix for the model in 
Fig. 3 A is full-rank. Therefore, we might be tempted to 
conclude that the parameters of this model can be in-
ferred uniquely from binding data.

Fig. 3 B shows two simulated datasets that were calcu-
lated using the model in Fig. 3 A with distinct parame-
ter values. For parameter set A, K1 = 200 µM1 and K2 = 
600 µM1. For parameter set B, K1 = 75 µM1 and K2 = 
1,500 µM1. To one of the curves (shown as circles), 
Gaussian noise of 2.5% variance has been added to 
mimic the variability of experimental data. Although 
the curves were generated from very different parame-
ter values, they produce similar curves (apart from the 
added noise). The error surface (Fig. 3 C) was com-
puted as the difference between a noiseless reference 
curve (the solid curve in B) and the model predictions 
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The solution of this linear system (Eq. 2) should yield 
a*, the optimal point estimate of the parameters given the 
data. However, the first and second columns of the design 
matrix (Eq. 3) are identical (and therefore linearly depen-
dent). In general, the rank of a matrix is the number of 
linearly independent rows (or columns), and a matrix 
whose rank is less than the total number of rows or col-
umns is called rank deficient. A rank-deficient matrix de-
fines a linear system with an infinite number of solutions 
(Seber and Lee, 2003). In this example model, the design 
matrix is rank deficient, and therefore Eq. 2 specifies not 
a point estimate, but rather all combinations of the param-
eters that are optimal fits to the data. By indicating that a 
unique estimate of the model parameters is not possible, 
this test of the design matrix for rank deficiency is effec-
tively a structural identifiability test. This method of assess-
ing parameter identifiability is similar to other proposed 
methods that use sensitivity matrices or Fisher information 
(Cobelli and DiStefano, 1980), and can be generally ap-
plied to any model where the observable can be expressed 
as a linear system of the model parameters.

Figure 3.  Parameter estimation for a two-
site sequential binding model. (A) Diagram 
of model in which macroscopic binding con-
stants K1 and K2 quantify the affinities of the 
first and second binding steps, respectively. Mi 
refers to receptor with i-bound ligands, and L 
refers to ligand. (B) Simulated binding curves 
for two different parameter sets. Parameter 
set A is consistent with weak cooperativity be-
tween the binding sites (K1 = 200 µM1 and K2 = 
600 µM1). Parameter set B is consistent with 
strong binding cooperativity (K1 = 75 µM1 
and K2 = 1,500 µM1). Gaussian noise was 
added to the curve for parameter set B to 
mimic experimental variability. Although 
these parameter sets (and their mechanistic  
interpretations) are quite different, they pro-
duce nearly identical observables. (C) Log-error 
surface in K1–K2 parameter space with respect 
to the noiseless data curve in B. For visualiza-
tion, log-error values are contoured at levels 
{8.5, 8, 5, 4, 3, 2.5, 1.5, 1, 0, 1, 2}. 
Although this error surface is bounded, large 
ranges of parameter values produce very simi-
lar binding curves. (D) MCMC samples of 
joint posterior distribution of the parameters 
when constrained by the noisy curve in B.
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parameter values, and the lowest error contour sur-
rounding this point would be well approximated by an 
ellipse (lightest color contour in Fig. 3 C). However, in 
the face of realistic experimental noise, our estimate of 
parameter confidence must take into account all param-
eter combinations that are consistent with any particular 
level of error. Such error contours are no longer elliptical 
but are curved (because of practical non-identifiability). 
If we use a quadratic likelihood approximation around 
the MLE in Fig. 3 C, we would vastly underestimate our 
parameter uncertainty. It might be the case that the 
likelihood surface near the MLE is relatively flat in the 
direction of one (or more) of the parameters, and this 
would suggest non-identifiability. However, we will be 
unable to distinguish between structural and practical 
non-identifiability without directly assessing all the re-
gions of parameter space that yield high likelihood. Be-
cause exhaustive exploration of parameter space will not 
be feasible for most realistic models (see Discussion), 
we next describe a computationally efficient method 
of exploring parameter spaces.

Bayesian inference
The previous section demonstrated that in the face of 
realistic experimental noise, analysis of the design matrix 
does not provide a sufficient condition for establishing 
whether the parameters of a model are uniquely con
strained by the available data. Therefore, a more general 
method is needed for determining whether the parame-
ters of a model are both structurally and practically iden-
tifiable. In Figs. 2 C and 3 C, we explored the entirety of 
parameter spaces to identify which regions led to low 
error between model predictions and data. If the param-
eter values in best agreement with the data are confined 
to a small region of the parameter space, then the model 
parameters are identifiable. This approach moves us 
away from the idea of accepting a single best fit to the 
data, and instead identifies all regions of the parameter 
space that are in agreement with the observations. In the 
language of Bayesian inference, what we seek is called 
the posterior distribution of the parameters: a probabil-
ity distribution on the parameter space that assigns 
higher probability to areas that are in better agreement 
with the observations. Here, we demonstrate that a Bayes-
ian approach provides accurate estimates of model pa-
rameters and their uncertainty and provides a direct and 
general method of diagnosing parameter identifiability.

Assume that we have gathered N observations, yN, to 
infer the “true” values of m parameters {1,2, . . .,m}, 
comprising the vector . In Bayesian terms, we seek to 
know p(|yN), the posterior probability distribution of 
the parameters, which is the probability (over the entire 
parameter space) of a particular value of  having given 
rise to the observations yN. To estimate this distribution, 
we apply Bayes’ rule,

	 p y p y pN Nθ θθ| ,|( ) ∝ ( ) ( ) 	

for a large region of the parameter space of the model. 
The error contours are curved, and thus, as for the 
models in Figs. 1 and 2, parameter compensations can 
occur so that disparate parameter values yield the same 
error. However, unlike those in Fig. 2 C, the error con-
tours in Fig. 3 C are bounded, with the lowest-error con-
tours approaching perfect ellipses. Thus, for data with 
infinite signal-to-noise ratio (no added noise), the two-
site, two-parameter sequential model is uniquely iden
tifiable, and fitting of such data would yield accurate 
parameter estimates. However, the inevitable presence 
of experimental noise in real data (even at low levels of 
2.5% variance) would prevent a unique determination 
of this model’s parameters. Previous authors have docu-
mented this phenomenon (Jacquez and Greif, 1985; 
Vajda et al., 1989; Raue et al., 2009) and distinguish be-
tween structural non-identifiability (as in Fig. 2), in which 
even noiseless data cannot yield unique parameter esti-
mates, and practical non-identifiability (as in Fig. 3), in 
which a model’s parameters are identifiable only if data 
are available with sufficient signal-to-noise.

These examples demonstrate the dangers one incurs 
when only point estimates or best fits are considered. It 
is of vital importance to establish not only the best fit to 
the data but also the full range of parameters that yield 
good fits. The typical approach when fitting data to non-
linear models relies on maximum likelihood (ML) theory 
to estimate parameters (Cramer, 1946). The ML esti-
mate (MLE) of a parameter is the point in parameter 
space that yields the optimum of the likelihood of ob-
serving the data given a particular value of the parame-
ters. Asymptotically, the MLE is an efficient and unbiased 
estimate of a parameter. As an example, if the data are 
assumed to be normally distributed, then minimizing 
the sum-squared-error between model and data pro-
vides the MLE (Seber and Wild, 2003). Once an opti-
mal point estimate is found, ML theory prescribes that 
confidence regions can be calculated by identifying the 
range of parameters that yield likelihoods consistent 
with the noise in the data (see Colquhoun et al., 2003, 
for a description of properties of ML estimators for com-
mon biophysical systems). For low dimensional models, 
a grid of the entire likelihood surface might be com-
puted (as in Figs. 2 and 3 C), but this becomes infeasi-
ble for larger models (see Discussion). Because of this 
constraint, it is typically assumed that the likelihood 
surface is approximately quadratic around the MLE. 
Therefore, efficient algorithms can be used to identify 
the MLE and to numerically approximate the local cur-
vature of the likelihood to construct a confidence ellip-
soid around the MLE. In cases of non-identifiability, this 
elliptical approximation around the MLE can be quite 
inaccurate. Take, for example, the likelihood surface of 
the two-parameter binding model when constrained by 
the noiseless binding curve in Fig. 3 C (K1 = 200 µM1 
and K2 = 600 µM1). The MLE would indeed be the true 
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This rule allows the chain to move efficiently toward 
areas of high posterior probability, but it also provides a 
mechanism to move away from local minima in the poste-
rior distribution by allowing transitions to regions of lower 
posterior probability. The Markov chain produced by this 
algorithm explores the parameter space in proportion to 
the posterior probability and provides a finite number of 
iid samples from the posterior distribution. This method 
can be used to efficiently approximate posterior distribu-
tions of arbitrarily high dimension. The next section illus-
trates the use of MCMC to assess parameter identifiability 
for some common biophysical models.

Applications
A common form of parameter inference involves fitting a 
candidate model to observations drawn from a controlled 
experiment. Although the Bayesian framework presented 
here is general, we focus primarily on curve-fitting appli-
cations because of their prevalence in experimental sci-
ence. We assume that each observation, yi, is a function of 
some independent variables, xi, and that the model of in-
terest defines the function, f(xi, ), which depends on the 
model parameters, . We seek to identify the values of  
that lead to the best agreement between yN and f(xN, ).

Our probability model considers that each observation 
yi is the result of f(xi, ) plus some experimental noise, 
which is assumed to be normally distributed (although this 
assumption is not necessary). Each observation is drawn 
from a normal distribution  m,  σ 2( ), whose mean, m, is 
equal to the model prediction, f(xi, ), for some particu-
lar values of the parameters, and whose variance, 2, is 
caused by noise of any kind:

	 y f xi i  , , .θ σ( )( )2 	

The posterior probability distribution (Eq. 4) then 
becomes,

	 p y y f x pN
i

i iθ θ σ θ|( ) ∝ ( )( ) ( )∏ | , , .2
	

In the following applications, the prior distribution, 
p(), is a flat distribution (a truncated uniform distribu-
tion). Although this form of the prior works well for the 
simulated datasets we use for illustration, it is in general 
an improper prior and more thoughtful prior distribu-
tions should be used in practice. By using MCMC, we 
generate a Markov chain that preferentially explores re-
gions of the parameter space that lead to high posterior 
probability (i.e., the best fits to the data).

Binding models
We showed earlier, using algebraic techniques, that 
the three-parameter binding model of Fig. 2 A is not 
structurally identifiable. Consistent with this finding, 
the error surface (Fig. 2 C) revealed an unbounded 
zero-error contour through the parameter space of 

which states that the posterior distribution of the pa-
rameters is proportional to the likelihood of observing 
the data, p yN | ,θ( )  multiplied by the prior distribution of 
the parameters, p(). If the observations yi are indepen-
dent, then the total posterior probability is the product 
of the posterior probability of each observation,

	 p y p y pN i
i

θ θθ| .|( ) ∝ ( ) ( )∏ 	  (4)

For a particular model and some observed data, it is 
straightforward to compute p(|yN). The structure of the 
posterior distribution indicates whether the region of 
highest posterior probability (the “best fits”) is localized or 
extends over a significant fraction of the parameter space, 
and is thus an indicator of parameter identifiability.

As with the direct calculation of error surfaces (Figs. 
2 C and 3 C), computing posterior distributions over an 
entire parameter space by brute force is possible for low 
dimensional problems but quickly becomes infeasible 
for even modestly sized models. Fortunately, posterior 
distributions can be computed efficiently using an exist-
ing numerical method from the statistics literature 
called Markov chain Monte Carlo (MCMC) sampling. 
The theory of MCMC is described elsewhere (Tierney, 
1994; Robert and Casella, 2010), and we provide only a 
brief description. Consider a high dimensional system 
for which the brute force computation of posterior 
probabilities over the entire parameter space is not 
practical. If we can draw a finite number of indepen-
dent and identically distributed (iid) samples from the 
corresponding posterior distribution, then the proper-
ties of this finite sample will approximate the proper-
ties of the posterior. To generate these iid samples, we 
simulate a Markov chain whose limiting distribution is 
the posterior distribution of interest. Generating a Mar-
kov chain with a desired limiting distribution can be 
achieved by several methods. Here, we rely on one of 
the simplest: the Metropolis Random Walk algorithm 
(Metropolis et al., 1953). For iteration i of the algo-
rithm, the Markov chain is in position i in the param-
eter space. A potential transition to a new point, * is 
generated by a random walk according to the following 
rules. The posterior probability of this potential point, 
p(*|yN), is computed and compared with the posterior 
probability of the current position of the chain, p(i|yN). 
If the proposal point has greater posterior probability 
than the current point, then it is accepted as a sample 
from the posterior distribution. If it has lower posterior 
probability, then it is rejected with probability propor-
tional to the decrease in posterior probability. Thus, 
transitions of the Markov chain are accepted with prob-
ability , where
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can compensate for one another to produce good fits to 
the data. In this case, the noisy data of Fig. 3 B is used to 
constrain the model parameters for MCMC. When faced 
with this level of noise in the data, parameters are able 
to compensate, as revealed by the curved structure of 
the posterior distribution. However, in contrast to situa-
tions of structural non-identifiability (for which it is im-
possible to constrain parameter estimates usefully), we 
would conclude that the true values of the parameter  
lie within a certain bounded region (by constructing a 
95% credible interval), when constrained by this data: 
parameter K1 is likely between 50 and 250 µM1, and 
parameter K2 is likely between 500 and 3,500 µM1. 
Although this level of confidence is a considerable im-
provement over the situation of Fig. 2, these large un-
certainties may still prevent us from achieving a useful 

this model. MCMC samples from the joint posterior 
distribution of F and KI (Fig. 2 D) show that this distri-
bution is highly curved, indicating that a large range 
of values of these parameters is in good agreement 
with the data. The MCMC approach leads to the same 
conclusion as the error surface, but with a much im-
proved computational efficiency and potential for scal-
ability (see Discussion).

A thorough mapping of the error surface for the two-
parameter model of Fig. 3 A, shown in Fig. 3 C, revealed 
that this model is not practically identifiable. Although 
unique “best-fit” parameters can be obtained in theory, 
this is not possible for data with a realistic signal-to-noise 
ratio. Consistent with this observation, the MCMC ap-
proximation to the posterior distribution for this model 
(Fig. 3 D) revealed that the two parameters of the model 

Figure 4.  Application of MCMC to dy-
namical systems. (A) A kinetic model 
with three states and four free parame-
ters. (B) Time course of the population 
of state B. Curve was generated by solv-
ing the dynamical system in A with the 
parameters {a, b, r, s} = {15, 2, 6, 4} (values 
in s1). (C) MCMC results when infer-
ring the parameter values from the data 
in B. Top panel shows one dimension 
of the Markov chain (corresponding to 
parameter a) throughout the course of 
the simulation (thick trace). Thin trace 
is the corresponding marginal likeli-
hood, which quantifies the total good-
ness of fit between the model and the 
data. All movements of the chain after 
the marginal likelihood settles (100 
iterations) generate iid samples from  
the posterior distribution. Lower traces  
are the corresponding trajectories for 
the remaining parameters. (D) Histo-
grams of the marginal posterior distri-
bution of each parameter shown along 
with the true values (vertical lines) and 
the corresponding 95% credible inter-
val (horizontal line segment).
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(Johnson et al., 2009a,b; Raue et al., 2009). Here, we 
use the more efficient Bayesian framework to determine 
whether candidate kinetic models are uniquely con-
strained by a given observable.

The kinetic scheme of Fig. 4 A comprises three states 
connected sequentially. Suppose that our observable 
signal is the population of state B over time (Fig. 4 B) 
with additional Gaussian noise. The independent vari-
able xi represents time and the model prediction, f(xi, ), 
is the solution to the system of differential equations 
represented by the diagram in Fig. 4 A with the param-
eter set, . We use these observations to estimate the 
posterior distribution of the model parameters by gen-
erating 50,000 MCMC samples. The structure of the 
posterior distribution will indicate whether the four 
transition rates {a, b, r, s} are uniquely constrained by 
this observable.

At the top of Fig. 4 C, the trajectory of one dimen-
sion of the Markov chain is plotted (corresponding to  
parameter a). The thin trace represents the marginal 
likelihood throughout the course of the simulation. 
The marginal likelihood, which quantifies the total 
goodness of fit between the model and the data, starts 
at a low value because the simulation is initialized at an 
arbitrary point in parameter space that is likely a poor 

level of mechanistic insight. For example, there are pos-
terior samples corresponding to {K1, K2} = {50, 3,000} and 
{200, 600}, each of which is a valid explanation of the 
data. Therefore, although we can put reasonable bounds 
on parameter estimates, we may not be able to draw even 
qualitative conclusions regarding mechanism.

Kinetic models
Many chemical and biochemical systems can be described 
by kinetic models (such as in Figs. 4 A and 5 A) compris-
ing systems of coupled differential equations. Typical 
experimental investigations of these systems involve 
monitoring the time course of the state populations in 
response to a perturbation to determine the transition 
rate constants. Numerous methods have been proposed 
to assess parameter identifiability in these so-called 
compartmental systems (Cobelli and DiStefano, 1980; 
Godfrey et al., 1982), including Laplace transforms 
(Walter and Pronzato, 1997) and information matrices 
(Bellman and Astrom, 1970). However, the practical 
non-identifiability of model parameters for many bio-
logical systems may not be detected by matrix methods 
(Raue et al., 2009). An alternative approach to assess 
identifiability involves computing low dimensional 
error surfaces in the relevant parameter space directly 

Figure 5.  MCMC can be used 
to assess parameter correlations. 
The MCMC trajectories from 
Fig. 4 C were used to visualize all 
the pairwise correlations between 
model parameters. The density 
of MCMC samples has been used 
to generate maps where areas of 
lighter shading correspond to 
higher posterior probability. In 
contrast to Figs. 2 and 3 D, the 
joint posterior distributions of 
these model parameters are ap-
proximately elliptical, indicating 
that the optimal estimates of the 
model parameters are contained 
in a small, bounded region of 
the parameter space.
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taken in aggregate, approximate the total uncertainty 
in each parameter (called the marginal posterior distri-
butions). Fig. 4 D shows histograms of the estimate of 
each parameter (after the burn-in) as well as the true 
values (vertical lines). Such an approximation of  
the marginal posterior distributions can be used to de-
rive credible intervals for each parameter. Although  
the peaks of the posterior distributions do not all coin-
cide with the true parameter values, 95% credible inter-
vals (horizontal line segments below the histograms) 
contain the true values.

Because MCMC samples are drawn from the total joint 
posterior distribution of the parameters, they can be used 
to assess any pairwise (or higher order, if desired) correla-
tions between the parameters. Similar to Figs. 2 and 3 D, 
pairwise joint posterior distributions are shown in Fig. 5, 
using the same MCMC samples from Fig. 4 C. The density 

fit to the data. As the Markov chain evolves, the mar-
ginal likelihood improves and eventually plateaus after 
100 iterations; this initial period is termed the “burn-in,” 
and these samples are discarded. After this conver-
gence, the Markov chain has reached stationarity, and 
all subsequent transitions provide iid samples from the 
posterior distribution (see Discussion). The estimate of 
parameter a (thick trace) moves in large jumps initially 
but eventually settles near the true value of 15. The tra-
jectories of each of the other parameters are also plot-
ted for the first 1,000 iterations in Fig. 4 C. In each case, 
the chain explores a small region of the parameter 
space but does not stray far from the optimal estimate, 
especially after the Markov chain converges. Each of 
these transitions represents an iid sample from the pos-
terior distribution and is a valid estimate of the param-
eter. Therefore, the transitions of the Markov chain, 

Figure 6.  MCMC can detect non-iden-
tifiable models. (A) A five-state model 
with eight free parameters. (B) Time 
course of the combined populations of 
states D and E with parameters {a, b, r, 
s, u, v, j, k} = {3, 3, 5, 10, 9, 9, 20, 4} (val-
ues in s1). (C) Result of using MCMC 
to infer parameter values. At top left, 
the thick black trace is one dimension 
of the Markov chain (corresponding to 
parameter a) throughout the course of 
the simulation. The thin trace is the cor-
responding marginal likelihood. The 
MCMC trajectories of the other model 
parameters are also shown. Because the 
marginal likelihood stabilizes, but most 
of the parameter estimates do not, this 
model is not identifiable when con-
strained by this measurement.
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by perfect data (Bellman and Astrom, 1970; Cobelli and 
DiStefano, 1980; Walter and Pronzato, 1997). A structur-
ally non-identifiable system is analogous to an under
determined system of algebraic equations, which has an 
infinite number of solutions.

Structural non-identifiability of a model’s parameters 
can often be detected using algebraic methods, as in 
our demonstration that the design matrix for the two-
site cooperative binding model in Fig. 2 is rank defi-
cient. Identifiability analysis indicates that this model is 
over-parameterized: we are attempting to extract three 
model parameters (F, KI, and KII) from curve fitting, 
whereas the rank of the design matrix for this system, 
which specifies the maximum number of parameters 
that can be quantified by fitting ideal (i.e., noiseless) 
total binding data, is two. The parameterization of the 
cooperative model is designed to address two funda-
mental questions about a receptor with two binding 
sites: (1) are the site affinities unequal (i.e., is KI ≠  KII?), 
and (2) does binding at one site influence binding at 
the other site (i.e., is F ≠  1?). Because it requires three 
parameters to quantify these properties, it is not possi-
ble to extract site affinities and cooperative interactions 
from this single type of experiment. Meaningful regres-
sion analysis of these data with this model requires a 
simpler parametrization than that in Eq. 1, such as

	 y x
b x b x

b x b x
( ) = +

+ +( )
1 2

2

1 2
2

2

2 1
. 	  (5)

One could then make the simplifying assumption 
that the binding site affinities are equal and define the 
parameters as {b1, b2} = {2K, F*K2}, where KI = KII = K. 
Alternatively, one could assume that the sites do not  
interact cooperatively and define the parameters as {b1, 
b2} = {KI + KII, KI*KII}. If both of these options were 
deemed unsatisfactory, then other types of data would 
need to be recorded. A new round of structural identifi-
ability analysis would then indicate whether three pa-
rameters could be extracted from fitting the enhanced 
dataset. This example illustrates how structural identifi-
ability analysis can provide an upper limit on what can 
be learned about a system through experimentation.

It is necessary that the parameters of a model are 
structurally identifiable with respect to a given type of 
data for inference to even be possible. However, the un-
certainties in the parameters estimated by regression 
analysis of such a system might still be unacceptably 
large. For these practically non-identifiable cases, the 
uncertainty in parameter values is linked to the amount 
of noise in the data, such that meaningful parameter 
estimates are obtained only if the noise amplitude is suf-
ficiently small (Jacquez and Greif, 1985; Faller et al., 
2003; Raue et al., 2009). Establishing that a system is prac-
tically non-identifiable is inherently subjective, because 

of samples is used to generate a map such that areas of 
lighter shading correspond to areas of higher posterior 
probability. In this way, the four-dimensional posterior 
distribution of this model is projected into each two- 
dimensional subspace. The ensemble of “good” fits to the 
data is confined to small regions of the parameter space 
that contain the true parameter values, and therefore  
the parameters of this model are identifiable.

As a counter example, consider the more complex 
model of Fig. 6 A, which has five states and eight free 
parameters. In this case, assume that the observable is 
the combined populations of states D and E (Fig. 6 B) 
with additional Gaussian noise. The panels in Fig. 6 C 
show 100,000 samples from the resulting MCMC trajec-
tories for each of the eight parameters. At top left, one 
dimension of the Markov chain (corresponding to pa-
rameter a) is shown along with the marginal likelihood 
(thin trace). The portions of the trajectories plotted in 
Fig. 6 C after the marginal likelihood settles represent 
excellent fits to the data. In nearly every case, a large 
range of values is sampled, all of which yield compara-
ble marginal likelihood, meaning that they provide  
excellent fits to the data and can be considered valid 
estimates. This unbounded exploration of the parame-
ters demonstrates that these parameters are not identi-
fiable when constrained by this data.

D I S C U S S I O N

Parameter identifiability and model selection
The work described here was motivated by the striking 
observation that typical binding data place very weak 
constraints on the magnitudes of affinity parameters for 
multisite receptors. We showed that many parameter 
sets, with affinity values varying by over four orders of 
magnitude for each of the steps in a sequential binding 
model for CaM, produced binding curves differing by 
<1% RMS (Fig. 1). Even if binding data could be ob-
tained with this low noise level, the enormous uncer-
tainties in the derived parameter estimates severely 
limit the usefulness of this data for developing a quanti-
tative model for calcium activation of CaM. Parameter 
estimates are not unique even for simple two-site bind-
ing models comprising only two or three parameters 
(Figs. 2 and 3). Similar problems affect parameter esti-
mation for dynamical models used to analyze biochemi-
cal kinetic data (Fig. 6).

When model parameters are not identifiable, one has 
little confidence that estimated values are close to the 
true values. For some model/data combinations, the data 
are fit arbitrarily well by many combinations of param
eter values, and the uncertainties in the model param-
eter estimates are unbounded, even for noiseless data. 
These systems are structurally non-identifiable: the model 
contains more parameters than can be supported, even 
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into a unified discipline called “system identification” 
(Eykhoff, 1974; Goodwin and Payne, 1977; Ljung, 1987; 
Walter and Pronzato, 1997). The parameter identifi-
ability aspect of system identification has been explored 
extensively in the control theory literature (Bellman 
and Astrom, 1970; Grewal and Glover, 1976; Cobelli 
and DiStefano, 1980). Recently, there has been a surge 
of interest in questions of parameter identifiability for 
models of large biological systems, such as genetic, met-
abolic, biochemical, and ecological networks, and sig-
nal transduction, cell cycle, and pharmacodynamic 
pathways (Audoly et al., 2001; Hengl et al., 2007; Chis  
et al., 2011; Cheung et al., 2013). For these complex in-
terconnected systems, the parameter compensations that 
result in non-identifiability are possible because of the 
large number of parameters required to model them.

There is a large body of literature on fitting binding 
curves of single- and multisite receptors using models 
such as the Hill model and the Adair model (Hill, 1913; 
Adair, 1925; Klotz, 1997; Wyman and Gill, 1990; Forsén 
and Linse, 1995) However, there has been relatively lit-
tle treatment of identifiability for simple biochemical 
systems (Kienker, 1989; Bruno et al., 2005; Johnson  
et al., 2009a; Raue et al., 2009; Hines, 2013). We show 
here that the parameters of even extremely simple 
models are often not identifiable, suggesting that this 
problem may be more widespread than is generally ap-
preciated. Parameter non-identifiability in biochemical 
systems was investigated by J.G. Reich and colleagues in 
the 1970s (Reich, 1974; Reich and Zinke, 1974; Reich  
et al., 1974a,b). In this work, the authors address diffi-
culties when analyzing ligand binding data as well as 
kinetic data. They proposed methods of calculating pa-
rameter sensitivity to detect redundant parameters 
(non-identifiability) and used these methods to com-
pare various binding models (such as those shown in 
Fig. 1) to quantify the information content in a binding 
curve. Their work predates modern computing power 
and the widespread use of efficient sampling algorithms 
such as MCMC.

Although we have focused on curve-fitting applica-
tions, the MCMC method can be applied to any model 
for which posterior probabilities can be calculated. For 
example, stochastic process models are commonly used 
for modeling the dynamics of molecules. Markov mod-
els and hidden Markov models have been used to un-
derstand the conformational dynamics of ion channels 
(Qin et al., 1997), molecular motors (Müllner et al., 
2010), and ligand-binding proteins (Stigler and Rief, 
2012). In these settings, the stochastic properties of sin-
gle molecule time series are used to constrain model 
parameters (transition rates between states). The model 
parameters are estimated by maximizing the likelihood 
of the data (or the posterior probability). Commonly, a 
point estimate of the parameters of a candidate model 
is calculated (Rabiner, 1989), but such an approach 

the acceptable parameter uncertainty must be weighed 
against the difficulty (or impossibility) of improving the 
signal-to-noise ratio of the data to a specified level.  
A useful approach, which we have followed here, is to 
determine by simulation the precision in parameter es-
timates that is required for gaining useful mechanistic 
insight into the system under study. If this precision  
requires data with a signal-to-noise ratio that is not 
achievable in practice, then the parameters are practi-
cally non-identifiable.

Using the algebraic approach described here, it is easily 
shown that the parameters of the four-site sequential 
model (Fig. 1 A) are structurally identifiable (i.e., the as-
sociated design matrix is full-rank). However, the simula-
tions in Fig. 1 indicate that synthetic binding data with 
extremely low (1% RMS) noise are not sufficient to con-
strain the values of the affinity parameters K1–K4 to within 
less than four orders of magnitude. Thus, the four-site 
model parameters are practically non-identifiable when 
constrained by this type of data. The large parameter un-
certainties prevent even qualitative insights about coop-
erative interactions in CaM.

For the examples in Figs. 1–6, we explored the unique-
ness of parameter estimation by fitting an assumed 
model to data. However, in real-world experimental in-
vestigations, the “correct” model is usually not known. 
There are often several different competing schemes 
for describing a given biophysical phenomenon, and 
thus identifying a satisfactory model is an important as-
pect of the overall modeling process. Although there is 
no way to confirm a model structure definitively, unsuc-
cessful models can be eliminated from consideration by 
their inability to fit the available data for any set of  
parameters. Because models and parameters are tested 
simultaneously, the MCMC method for diagnosing pa-
rameter non-identifiability may also be useful for model 
selection (Siekmann et al., 2012). When the available 
data lack the power to constrain one model’s parame-
ters significantly, it is likely that many other models of 
comparable complexity will also easily fit that data. 
Therefore, diagnosing identifiability comes as a first 
step in the model selection process whereby potential 
models are discarded from consideration if they cannot 
be constrained by the data. Detecting when model pa-
rameters are not identifiable can indicate situations in 
which model selection is also compromised.

Relationship to previous work
The strong interrelationships between experimental 
design, model selection, and parameter estimation have 
been rediscovered in many fields, including economet-
rics (Koopmans, 1949; Rothenberg, 1971), process in-
dustries (Gustavsson, 1975; Chappell and Godfrey, 1992), 
systems and control engineering (Lee, 1964), and, more 
recently, systems biology (Audoly et al., 2001; Chis et al., 
2011). These ideas have been rigorously systematized 
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MCMC algorithms have been developed (Neal, 2010; 
Girolami and Calderhead, 2011).

We briefly mention some of the practical consider-
ations that must be noted when using MCMC to estimate 
posterior distributions. Fig. 4 C shows the parameter tra-
jectories of MCMC samples from an identifiable model. 
Each of the parameters is initialized at an arbitrary value, 
and these trajectories visualize how parameter estimates 
move toward regions of high posterior probability. Once 
these large movements of the parameters cease, the chain 
makes transitions only in proportion to the posterior 
probability, and the Markov chain is said to have reached 
stationarity (or converged). After convergence, all subse-
quent transitions of the chain produce iid samples from 
the posterior and can be used for parameter estimation. 
The iterations preceding convergence are termed the 
“burn-in period,” and these values are discarded. The 
MCMC samples visualized in Figs. 2 D and 3 D, the his-
tograms of Fig. 4, and in Fig. 5 have excluded the burn-in 
samples. It is important to determine when the Markov 
chain has reached stationarity, and many methods can be 
used. Most simply, one could assess convergence by visual 
inspection: the trajectories in Fig. 4 C seem to have con-
verged by 200 iterations. More rigorous methods are de-
sirable, and many have been developed; we point the 
reader to Gelman and Rubin (1992) and Geweke (1992). 
We also direct the reader to Gilks et al. (1996a) for a dis-
cussion of chain mixing efficiency and the effect on 
burn-in time. For nonspecialists and those interested in 
implementing MCMC sampling, there are two excel-
lent introductory handbooks by Brooks et al. (2011) and 
Gilks et al. (1996b) that provide practical advice and 
guidance, and include numerous case studies of MCMC 
applied in diverse fields such as epidemiology, genetics, 
archeology, ecology, and image analysis.

Parameter identifiability and experimental design
The tools described here for diagnosing parameter iden-
tifiability can be a useful component of the experimental 
design process. Figs. 4 and 6 present potential signals 
that might be used to constrain different kinetic schemes. 
Although previous work has addressed model discrimi-
nation with macroscopic kinetic time series (Celentano 
and Hawkes, 2004), a Bayesian approach provides a di-
rect assessment of identifiability. By sampling the poste-
rior distribution using MCMC, we showed that the 
model with four parameters (Fig. 4) is uniquely con-
strained by the data. Conversely, the model with eight 
parameters (Fig. 6) is non-identifiable when constrained 
by the data, and inferences about the properties of this 
model would be meaningless. In the latter case, we may 
reject the initial model in favor of one with fewer pa-
rameters, although the parameters of the simpler model 
may lack the required mechanistic significance. Alter-
natively, if this model is motivated by specific phenom-
enological considerations, then we may be resistant to 

does not indicate whether these parameters are uniquely 
constrained by a particular time series. In contrast, 
MCMC samples the full posterior distributions and thus 
provides an indication of non-identifiability. This ap-
proach has been applied to the study of ion channel 
gating (Siekmann et al., 2012) and may become a pow-
erful method for developing useful models of molecu-
lar processes.

Computational advantages of MCMC
The Bayesian framework presented here has clear advan-
tages over alternative methods of diagnosing parameter 
identifiability. One approach might be to examine the 
sensitivity of the fit to changes in the parameters, using a 
variety of matrix-based methods. We showed that this ap-
proach can only be applied in special cases and can even 
misleadingly suggest reasonable parameter estimates in 
the presence of realistic experimental noise. It is neces-
sary to directly explore the full range of the parameter 
space that leads to good agreement with the data. There-
fore, an alternative approach might be to directly com-
pute the error between the data and model for an entire 
parameter space. This approach works well for simple 
problems but is not feasible for large models. For a  
K-dimensional model, computation of N points for each 
parameter requires ( )N K  error calculations (here the no-
tation  f N K,( )( )  specifies that as a function of N and K, 
the number of computations is on the order of f(N, K)). 
Obviously, this exponential explosion makes larger mod-
els impractical. An alternative is to consider just the pair-
wise parameter correlations for all model parameters 
and compute the total error. This approach was taken in 
Figs. 2 C and 3 C and has been used previously (Johnson 
et al., 2009a,b). This method is limited, as errors are cal-
culated on a large joint-error-surface, and therefore com-
putational effort is wasted in regions of parameter space 
that yield poor fits to the data. In addition, each total- 
error computation involves finding the best-fit point of the 
other parameters and thus entails  N K2 2( )  repetitions 
of some optimization algorithm, which itself might in-
volve many iterations to reach convergence. In contrast, 
MCMC focuses computational effort in the region of pa-
rameter space that is relevant to the data. Further, poste-
rior estimation requires only  NK( )  repetitions of a 
simple calculation of posterior probability. Such Bayesian 
methods have recently been embraced by the systems bi-
ology community, where inference is routinely conducted 
on models containing >70 free parameters (Battogtokh 
et al., 2002; Klinke, 2009; Eydgahi et al., 2013). Using 
MCMC to sample posterior distributions yields not only 
accurate parameter estimates in high dimensional spaces 
but also provides information regarding identifiability 
and nonlinear parameter correlations. Our MCMC im-
plementations use the Metropolis–Hastings algorithm, 
which is conceptually simple but not optimal for high  
dimensional problems. Fortunately, more sophisticated 
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