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Methods and Approaches

I N T R O D U C T I O N

The method of single molecule photobleaching has be-
come a popular tool to examine stoichiometry and oligo-
merization of protein complexes. In recent work, this 
method has been used to determine the stoichiometry 
of a great variety of transmembrane proteins such as  
ligand-gated ion channels (Ulbrich and Isacoff, 2008; 
Reiner et al., 2012; Yu et al., 2012), voltage-gated ion chan-
nels (Nakajo et al., 2010), mechanosensitive channels 
(Coste et al., 2012), and calcium release–activated calcium 
channels (Ji et al., 2008; Demuro et al., 2011). Addition-
ally, this method has been used to examine complexes 
of other types of proteins such as -Amyloid (Ding et al., 
2009), helicase loader protein (Arumugam et al., 2009), 
and toxin Cry1Aa (Groulx et al., 2011), among many 
others. The approach consists of attaching a fluorescent 
probe (typically GFP or a variant) to a protein subunit 
of interest and imaging single molecules. After suffi-
cient excitation, a fluorophore will bleach, resulting in 
a step-wise decrease in observed fluorescence. Then, by 
simply counting the number of these bleaching steps, 
one can observe how many fluorophores were imaged 
and thus how many subunits, n, were associated in the 
observed complex. However, there is a nonzero proba-
bility, 1  , that any given fluorophore will already be 
bleached (or otherwise unobserved), and thus less than 
the highest possible number of fluorescence decreases 
will be observed. Stated differently, the parameter  is 
the probability of successfully observing each possible 
photobleaching event. As noted by the originators of 
this method, the resulting observations are drawn from 
a binomial distribution (Ulbrich and Isacoff, 2007), and 
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maximum likelihood estimate.

thus the highest observed number of bleaching steps is 
the minimum number of subunits in the complex.

As an example, consider the data shown in Fig. 1 
(A and B). Here, the distributions of observed bleach-
ing steps reported in Ulbrich and Isacoff (2007) and 
Coste et al. (2012), respectively, have been reproduced. 
In both of these studies, the investigators are using the 
method of single molecule photobleaching to quantify 
the assembly of  subunits of the cyclic nucleotide–gated 
(CNG) ion channel. These experiments are performed 
on the same protein, and both show that the highest 
observed number of bleaching steps is four. Note that 
these distributions are quite different, as preparation 
variability between the two experimental groups has 
likely led to differences in fluorophore prebleaching 
(i.e., differences in ). In Ulbrich and Isacoff (2007), 
the authors report that  = 0.8, and in Coste et al. (2012), 
the value is not reported, but I estimate it to be 0.5, 
which is not much lower than other reported values, 
such as 0.53 (McGuire et al., 2012). It is unclear how the 
differences in these distributions (and in ) should impact 
the interpretation of these results. Both of these distri-
butions provide evidence that the CNG channel is a tet-
ramer, but to what extent does one of these distributions 
provide better evidence in support of this conclusion?

It is not immediately obvious how to determine the 
confidence with which the number of subunits can be 
inferred from these observations. In particular, it is pos-
sible that the true n is actually larger than the highest 
observed number of bleaching steps, but because of the 
finite sample size, the true tails of the distribution were 
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If we gather observations {y1, y2,…, yN}, denoted yN, 
then the aim of statistical inference is to use observations 
yN to infer the true values of parameters θ .  Although 
it may be simple to obtain a single, optimal estimate of 
the parameters given the data, the goal of Bayesian in-
ference is to consider all possible values of the param-
eters and quantify which regions of parameter space are 
most consistent with the observations. This is achieved 
by constructing a probability distribution over the pa-
rameter space (the posterior distribution), where areas 
of higher posterior probability are in better agreement 
with the data than areas of lower posterior probability. 
In this way, our uncertainty in estimating the parameters 
is captured by the posterior distribution of the param-
eters given the data, p(θ |yN). Posterior distributions 
are calculated from p(yi|θ ), the likelihood of observing 
yi given θ ,  and p(θ ), the prior distribution of the 
parameters. A prior probability distribution is simply a 
quantification of any prior knowledge we might have 
about the parameters before conducting an experiment. 
Using the posterior distribution, we are able to quantify 
the full uncertainty in all model parameters.

Binomial distributions and ill-posed inference
If k fluorescently labeled protein subunits are associated 
together, then one might expect to observe k photo-
bleaching steps. However, each fluorophore may al-
ready be bleached, with probability 1  . The likelihood 
of observing k bleaching steps, if a total of n steps are 
possible, will follow a binomial distribution:
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Consider that we have one observed number of bleach-
ing steps, yi, and wish to estimate  and n. Furthermore, 
we wish to estimate the full distributions over parameters 

not observed. Alternatively, the data collection algorithm 
might have resulted in artifactual observations, causing 
an overestimation of n. A method has not been firmly 
established to determine whether parameter estimates 
are unique and the confidence with which parameters 
can be inferred from this data. I show that this infer-
ence is nontrivial because binomial distributions pres-
ent an ill-posed inference problem: there does not exist 
a unique combination of n and  that could have pro-
duced a particular set of observations. As a result, it may 
be highly likely that these data are misinterpreted. To 
resolve this disparity, I present a generalized method of 
inference that provides accurate estimates of parameter 
confidence. The methods developed here will prevent 
misinterpretation and will yield more fruitful experimen-
tation and accurate conclusions.

M A T E R I A L S  A N D  M E T H O D S

All simulations and figures were generated using R.

Online supplemental material
A TXT file contains functions written in R that can be used to 
implement the methods described in the Results and discussion. 
A separate PDF file provides a walk-through for the use of the 
R language and the analysis functions contained in the TXT file. 
A CSV file contains simulated data in a comma-separated for-
mat; it is used to illustrate how to import and analyze data using 
the methods contained in the TXT file. Online supplemental 
material is available at http://www.jgp.org/cgi/content/full/
jgp.201310988/DC1.

R E S U L T S  A N D  D I S C U S S I O N

Bayesian inference
Because the analysis presented in this paper employs 
Bayesian inference, this section provides a brief tutorial. 
Suppose that we have some probability model with m 
parameters {1, 2,…, m} = θ .  This model will be denoted 
p(yi|θ ) for any observable yi and quantifies the proba-
bility of observing yi given the values of parameters θ .  

Figure 1.  Example distributions reproduced 
from the literature. (A and B) The observed 
distributions reported in Ulbrich and Isacoff 
(2007) in A and Coste et al. (2012) in B, when 
using the method of single molecule photo-
bleaching to assess the stoichiometry of the 
CNG ion channel. In both of these distribu-
tions, the highest observed number of bleach-
ing events is four. However, note that these 
distributions are quite different, likely because 
of preparation variability. It is unclear how 
these differences should influence the inter-
pretation of such data. A method has not been 
established that takes into account the prop-
erties of the observations to accurately accept 
and reject hypotheses. Images in A and B are 
reprinted with permission from Nature Methods 
and Nature, respectively.

http://www.jgp.org/cgi/content/full/jgp.201310988/DC1
http://www.jgp.org/cgi/content/full/jgp.201310988/DC1
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It can be seen that this posterior of  is also a Beta 
distribution:

	 p n y Be A BN( | , ) ( , ),θ ∝ 	 (2)
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Therefore, if data are drawn from a binomial distribu-
tion, the posterior distribution of  (with respect to a 
fixed n) will be a Beta distribution with parameters for 
A and B as shown above. The choice of Beta prior will 
have little qualitative effect on the findings presented 
here and the use of any reasonable prior would yield 
the same general conclusions. However, the Beta prior 
is particularly appropriate for the parameter  and also 
results in a simple form for the posterior (Eq. 2). Fig. 2 
is an example of the posterior distribution of  for some 
simulated data with n = 4. The black vertical line is sim-
ply the estimate of  that one would calculate by varying 
the value of  to find a best fit to the model Bn(4,): this 
is the maximum likelihood estimate (MLE). The other 
curves in Fig. 2 are the posterior probabilities of  for 
two hypothetical datasets of different sizes. Note that in 
the absence of strong prior information, the maximum 
value of the posterior distribution (the maximum a pos-
teriori [MAP] estimate) will be equal to the value of  that 
we estimate by finding the best fit to the data (the MLE). 
In this way, the full posterior distribution over the param-
eter not only provides an optimal point estimate (MAP), 
but also provides a confidence about the full range of 
the parameter and which values are consistent with the 
data. As we would expect, as the number of observations 
increases, the resulting posterior distribution will become 
narrower, and we will have less uncertainty regarding 
the true value of . Finally, note that the estimates of  

 and n that are most consistent with this observation. 
From Bayes’ rule, we calculate this posterior probability 
distribution as
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where p() and p(n) are the prior distributions over 
the values taken by parameters  and n. If N observa-
tions are independent, this proceeds similarly for the 
full set yN:
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As an example of posterior inference, imagine that 
we have observations drawn from a binomial distri
bution with a known n and we wish to estimate . Be-
cause we suppose that n is known, the joint posterior 
distribution (Eq. 1) reduces to just the posterior dis-
tribution of :
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We need to decide on a form for the prior distribution 
p(). As  is the probability of a binary event, a useful 
and flexible form for the prior will be the Beta distri-
bution, Be(a,b). This distribution is defined on the in-
terval [0,1] and has two parameters, a and b. If we have 
little prior information about , then setting a = b = 1 
results in a flat prior distribution. If, however, we have 
a strong guess about , then parameters a and b can be 
chosen to properly reflect our prior belief. In either 
case, the posterior distribution is
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where (a,b) is the proper normalization constant. The 
form of this posterior simplifies to a useful result:
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contributes only a linearly proportional term to the pos-
terior and thus can be ignored. As mentioned previously, 
we never know  with certainty, so we must consider all 
possible values of  for each n. The marginal posterior 
of n is then found by integrating over :
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for n ≥ k, where  is the gamma function. The marginal 
posterior of n takes the form of this ratio of gamma 
functions, and it can be seen that this function is zero 
for n < k, is maximized at k, and is monotonically de-
creasing for n > k. For many independent observations, 
the relevant posterior, p(n|yN), is just a product of these 
functions and will have the general property of being 
maximized at the largest observed yi and rapidly decrease 
for n > .̂k

Note that the marginal posterior of n (Eq. 3) will de-
pend only on the largest observed yi. Consider the case 
that the true n is larger than ,̂k  but because of the finite 
sample size, no evidence of the true n was observed. In 
this case, the posterior distribution will always be peaked 
at the smallest n that can explain the data, and any greater 
n will have much smaller posterior probability. This pro-
vides little ability to compare the evidence from, say, Fig. 1 
(A and B). We can ignore the Bayesian approach used 
thus far and simply calculate the maximum likelihood 
estimate for n given .̂k  If we consider n = ,̂k  the com-
puted likelihood will be larger than if we consider any 
n > ,̂k  as the optimal estimate of  will necessarily be 
lower than that for n = .̂k  Because of this, the likelihood 
is always maximized at the smallest n that can account 
for the data. Therefore, typical methods of estimation 
will fail in this pursuit, and it is worth understanding why 
this is the case. This undesirable property stems from 
the fact that this inference problem is ill-posed: there is 
generally not a unique solution for n and  for a given 
dataset. To visualize this, we can compute the joint pos-
terior distribution (Eq. 1) for simulated data. This joint 
posterior is plotted in Fig. 3 A for a region of the param-
eter space in  and n, and areas of lighter color corre-
spond to areas of higher posterior probability (analogous 
to lower error between the data and the model). For ex-
ample, if we examine p(|n = 4,yN), then a horizontal slice 
through the joint posterior (at n = 4) corresponds to 
our estimate of  given that n = 4 and this distribution is 
peaked around 0.6. Notice that for each n > 4, the esti-
mate of  systematically shifts to lower values. This must 
be the case because if a binomial distribution of n = 10 

(Eq. 2) will depend on the value of n and that the con-
ditional posterior distribution, p(|yN,n), defines a fam-
ily of distributions for various values of n. This result will 
be useful later.

For the experimental setting of single molecule pho-
tobleaching, n is not known but instead needs to be in-
ferred from the data. After gathering some observations, 
yN, we can determine the highest observed number of 
bleaching steps, ,̂k  and be tempted to conclude that 
n = .̂k  Before doing this, we will want a way to establish 
that n = k̂  is highly supported by the data and that all 
other n > k̂  are not supported by the data. We want 
to calculate p(n|yN), the marginal posterior distribution 
over n. This is the probability (over all n) of a particular 
n having given rise to the observations. We can directly 
calculate the marginal distribution of n for this model. 
Consider a single observation yi = k. The joint posterior is
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Because  represents the probability of a binary event, 
we use a Beta distribution as the prior, p() = Beta(a,b). 
For the prior on n, we will use a bounded uniform dis-
tribution to reflect that we have no prior guess or bias as 
to the true value. Because this prior of n is flat, the prior 

Figure 2.  Posterior probability distribution of . An example of 
the posterior probability of  for hypothetical datasets. The verti-
cal black line represents the optimal point estimate of  that 
one would calculate by error minimization (the MLE). The other 
curves are the posterior probability distributions of  for different 
sample sizes. Note that as the number of observations increases, 
the posterior distribution is narrowed as our confidence about the 
true value is improved. Also note that the maximum value of pos-
terior probability coincides with the MLE that would be calculated 
by minimizing error. Calculating the posterior distribution over 
parameters provides not only an optimal point estimate, but also 
a quantification of parameter uncertainty.
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(A and B) by drawing from a binomial distribution with 
n = 4 and  equal to 0.8 (Fig. 3 B) and 0.5 (Fig. 3 C). In 
each case, we are tempted to conclude the true n is four, 
but can we make this assertion with equal vigor in both 
instances? An obvious approach is fitting binomial dis-
tributions to the data and assessing the quality of fit. The 
circles in Fig. 3 represent the best fit to a binomial dis-
tribution with n = 4, and it is clear that these fit the data 
well in both cases and that we are able to accurately es-
timate the optimal value of . However, to be confident 
about the assertion that n = 4, we must ask whether these 
fits are unique. The crosses in Fig. 3 show the best fit to 
a binomial distribution with n = 5. In Fig. 3 B, it is im-
mediately obvious that even the best fit is a poor match 
to the data: the n = 5 binomial distribution underesti-
mates the number of observed three and four bleach-
ing steps and also predicts that roughly 10% of the data 
should have reflected five bleaching steps, whereas no 
five bleaching steps are observed. In this case, it is very 
obvious that n = 4. In Fig. 3 C, we cannot be so certain. 
Although the n = 4 binomial distribution certainly pro-
vides a good fit to the data, the n = 5 model also fits the 
data quite well for all observed bleaching steps. Further-
more, the n = 5 fit predicts that only 1% of the data 
should reflect five bleaching steps, and thus we might not 
have seen any simply because of the finite sample size. In 
this case, fits to the data are not unique and n and  can 
compensate to produce identically good fits. This stems 
directly from the fact that this inference problem is ill 
posed, as depicted in the joint posterior distribution 
(Fig. 3 A). However, note that the possibility of this un-
derestimation of n depends very strongly on the value 
of  and qualitatively we can be more confident in the 
data in Fig. 3 B than Fig. 3 C. The methods proposed in 
the next section quantify this confidence.

Parameter confidence
Returning to example data, such as that in Fig. 3 (B or C), 
suppose we have observed some maximum number of 
bleaching steps, ,̂k  and are tempted to conclude that 
n = k̂  but want to consider the irksome possibility that 
n > ,̂k  although we did not observe any evidence of it. 
We would like to make a statement to the effect of: Given 
N observations less than or equal to ,̂k  we can conclude 
with confidence  that the true n is less than k̂  + 1. The 
strategy proposed here is similar, in spirit, to classical hy-
pothesis testing, where the null hypothesis is that n > k̂  
and 1   quantifies the probability of observing k̂  under 
the null hypothesis.

As the null hypothesis, assume that n = k̂  + 1, but 
we simply did not observe any yi = k̂  + 1 because of 
the finite sample size. For simplicity, assume (unreal-
istically) that we have an exact point estimate of  for 
n = k̂  + 1 denoted θ̂  (this assumption will be relaxed 
later). Then the probability of observing an event of 
size k̂  + 1 is

somehow generated the data in Fig. 1, then the failure 
probability, 1  , would have to be quite high to have 
generated no observations exceeding yi = 4. As a conse-
quence, notice that the joint posterior (Fig. 3 A) is highly 
structured, and it is possible for any arbitrary n to have 
generated the data with a compensatory decrease in . 
Furthermore, the most probable estimate for n will always 
be the smallest possible one, regardless of the observed 
distribution (Eq. 3). As a result of this, methods that 
rely solely on likelihood calculation will not be able to 
discern the most accurate estimate of these parameters.

To demonstrate how this ill-posed inference impairs 
our ability to learn n from data, Fig. 3 (B and C) shows 
simulated data meant to mimic the range seen in Fig. 1 

Figure 3.  Ill-posed inference. (A) Joint posterior distribution of 
n and , given simulated data, yN. Areas of lighter color reflect 
areas of higher posterior probability. Note that n can grow quite 
large and a compensation in  results in high posterior probabil-
ity. There does not generally exist a unique combination of n and 
 that could produce some particular observations: this inference 
problem is ill posed. (B) Data drawn from a binomial distribution 
with n = 4 and  = 0.8. (C) Data drawn from a binomial distribu-
tion with n = 4 and  = 0.5. In B and C, circles (o) represent the 
best fit to a binomial distribution with n = 4, and crosses (+) rep-
resent the best fit to a binomial distribution with n = 5. In C, the 
best fits to the data for n = 4 and n = 5 are equally good because 
such fits are not unique.
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data. For visual ease, the color map in Fig. 4 A focuses 
on several contours of , and the colors threshold all 
 values to where they lie within these regimes. From this 
systematic exploration, some useful insights emerge. As 
we might have guessed, for large , the probability of un-
derestimating the true n is trivially small, even for small 
datasets. However, for  in the range of only 0.5, which 
has been seen multiple times in the literature (Coste et al., 
2012; McGuire et al., 2012), this possibility is not so rare. 
This same information is presented in Table 1 in a more 
accessible form. For concreteness, Fig. 4 B shows  (con-
fidence) as a function of sample size for two values of . 
For high , we can have high confidence in a conclusion 
even for a dataset of size 25. Conversely, if  is 0.5, then 
a dataset of the same size would lead to the wrong con-
clusion with probability approximately 1/2. Returning to 
the data from Fig. 1, we can now (approximately) assess 
the strength of each of these data sources. We can be 
very confident in these data sources as 1   < 106 in both 
instances. Fortunately, these two examples from the lit-
erature both provide reliable evidence that the CNG chan-
nel is a tetramer, although without using such methods, 
we would have been unable to quantify this confidence.

It is also important to establish that our estimate of 
confidence with respect to the hypothesis n = k̂  + 1 is a 
lower bound on all conceivable hypotheses n > k̂  + 1. 
For simplicity, we will first consider the potential null hy-
pothesis n = k̂  + 2. Again, we are assuming that we have an 
optimal estimate ,̂θ  but now with respect to the model 
Bn(k̂  + 2, θ̂). As above, the probability of observing an 
event yi = k̂  + 2 is ˆ .

ˆθ k+2  Given that we have N observa-
tions, the probability of observing zero events of size  
yi = k̂  + 2 is

	 	 (5)

	 	

We then need to calculate the probability of not seeing 
this event, given that we have N observations. To do this, 
we consider the sampling distribution of events yi = k̂  + 1 
under the null hypothesis, Bn(k̂  + 1,θ̂). This results in 
another binomial distribution, Bn(N, ˆˆθ k+1), where there 
are N chances of observing the event and the probabil-
ity of the event is ˆ .

ˆθ k+1  Then the probability of k̂  being 
the highest observed yi is p(0|N, ˆˆθ k+1) and our estimate 
of confidence, , is 1  p(0|N, ˆˆθ k+1):

	 	 (4)

As an approximate guide for experimental design, we 
can systematically explore the space of  to understand 
how probable this underestimation actually is. Fig. 4 A 
plots  (confidence) for a region of  and N and for a 
fixed value of k̂  = 4. Again, smaller values of  mean 
that there is a higher probability of not observing the 
true tails of distribution under the null hypothesis. For 
smaller values of , we cannot be confident that a data-
set with a similar  and N was not drawn from a bino-
mial distribution that was larger than indicated by the 

Figure 4.  Estimated parameter confidence. (A) Estimated  for various  and sample sizes. The value of  is represented by the color 
map. For simplicity, contours of  are shown, and the color of each region indicates areas where  lies between these contours. (B)  as 
a function of sample size for two values of .
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The probability of seeing no observations of size k̂  + 1 
or k̂  + 2 is just the product of Eqs. 5 and 6. Therefore, 
our confidence that true n is not k̂  + 2 goes as

	 	 (7)

Generally, the estimate θ̂  used in Eq. 5 will be less than 
that of Eq. 4 (see Fig. 3 A). However, the confidence esti-
mate in Eq. 7 involves multiplication with an additional 
term than Eq. 4. Therefore, the confidence estimated 
when considering the hypothesis n = k̂  + 2 will always be 
higher than that for the hypothesis n = k̂  + 1. This is visual-
ized in Fig. 5 where confidence is plotted as a function of 
sample size for the null hypothesis n = k̂  + 1 as well as for 
the null hypothesis n = k̂  + 2. Clearly, the estimate of con-
fidence with respect to k̂  + 1 is the most conservative esti-
mate. It is easy to see that this relationship will persist for 
all n > k̂  + 1. Because of this, we only need to calculate 
confidence with respect to k̂  + 1, as this provides a lower 
bound on confidence with respect to all possible n > .̂k

The previous discussion provides a notion of confi-
dence only if we know the value of  exactly. As this is 
never the case (Fig. 2), we need to generalize Eq. 4 to 
include our uncertainty in the value of . This uncer-
tainty is quantified by the conditional posterior distribu-
tion, p(|yN, k̂  + 1), with respect to the null hypothesis 
n = k̂  + 1. Our estimate of confidence should consider 
all possible values of , weighted by their posterior prob-
ability. In particular,

	 	 (8)

The probability of observing an event of size yi = k̂  + 1 is

	 	

The probability of observing exactly zero of these events, 
given a total of N observations is

		  (6)

 

TA B L E  1

Approximate guide for experimental design

 n

2 3 4 5 6 7 8

0.85 5 7 8 10 12 15 18

0.8 7 9 12 16 20 26 32

0.75 9 13 17 24 33 44 60

0.7 11 17 26 37 54 78 112

0.65 15 24 38 59 92 143 221

0.6 19 34 57 97 163 272 455

0.55 26 48 90 165 301 548 998

0.5 35 72 146 293 588 1,177 2,356

0.45 49 110 248 553 1,231 2,737 6,048

This table enumerates how many observations (N) would be required to achieve a confidence in excess of 0.99 for various values of  and n.

Figure 5.  Comparison of parameter confidence when consid-
ering multiple models. The black curve is a plot of confidence 
versus sample size for the null hypothesis n = k̂  + 1. The gray 
curve is the parameter confidence for the null hypothesis n = 
k̂  + 2. It is clear that only the hypothesis n = k̂  + 1 needs to be 
considered and will result in an estimate of confidence that is 
a lower bound on all possible hypotheses.
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in all of the model parameters. The Monte Carlo inte-
gral in Eq. 9 converges quickly as is shown in Fig. 6 A, 
which is a plot of the estimate of  (for some simulated 
dataset) as a function of the number of samples, θ .  In 
Fig. 6 B is a comparison of the estimate of confidence as 
calculated using the two methods developed so far. The 
smooth curve is a plot of confidence as a function of 
sample size for a point estimate of  (αθ̂ ). The circles 
are the corresponding estimate of confidence using the 
Bayesian model (B), which takes into account the full 
uncertainty in . Generally, the simplified estimation of 
confidence (αθ̂ ) overestimates confidence because of 
the assumption that  is known with certainty. Indeed, 
the estimated confidence when considering the full pa-
rameter uncertainty is consistently less than with the sim-
plified approach, and thus this method affords a more 
realistic and conservative estimate of parameter confi-
dence. Finally, note that as N increases, so too will A and 
B (of Eq. 2). The result is that the conditional posterior 
of  becomes narrowed and more probability mass is 
located closer to the optimal estimate, θ̂  (see Fig. 2). In 
the limit of large N, the posterior of  shrinks to a point 
estimate, and confidence calculated via Eq. 8 converges 
exactly to Eq. 4 (see also Fig. 6 B). Thus, the Bayesian 
method presented here is a generalized approach that 
collapses to the more simplified estimate in the limit of 
large sample sizes.

I now address a related problem when interpreting 
such data, which is discussed only briefly as the basic 
method was proposed previously in Groulx et al. (2011). 
Consider that an imperfect data collection algorithm 
induces artifactual observations into the distribution. In 
particular, suppose that the largest number of observed 
bleaching steps, ,̂k  occurs with an anomalously low prev-
alence and we are tempted to conclude that all yi = k̂  

where A and B are calculated from observed distribution 
as in Eq. 2. In the absence of a simple form of the integral 
in Eq. 8, we turn to Monte Carlo integration. Calculation 
of  entails integrating a function over a probability dis-
tribution. In particular, integration is over the condi-
tional posterior of , i.e.,

	 	

where f() is the probability of observing zero events of 
size k̂  + 1 under the null hypothesis. If we can draw inde-
pendent and identically distributed (iid) samples from 
a probability distribution, then a finite number of such 
samples can be used to approximate the integration. 
For example, if we draw S samples θ  from the distribu-
tion p(), then

	 f p d
S

f i
i

S

( ) ( ) ( ).θ θ θ θ≈
=
∑∫

1

1

 	

Fortunately, the form of the conditional posterior of  is 
simple (Eq. 2), so generating iid samples, θ ,  can be 
achieved by drawing Beta random variables: θ  ~ Be(A,B). 
Then  can be estimated as

	 	 (9)

In this way, a proper estimate of confidence can be 
calculated that takes into account the total uncertainty 

Figure 6.  Estimation of parameter confidence using Monte Carlo integration. (A) The estimate of confidence from Eq. 9 as a function 
of the number of posterior samples, θ ,  used for Monte Carlo integration. This estimate converges quickly. (B) Confidence as a func-
tion of sample size estimated using a point estimate of  (αθ̂) and the Bayesian estimate (B). It is clear that αθ̂  overestimates parameter 
confidence and that the true uncertainty in  must be taken into account for an accurate estimate of confidence.
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are artifacts and the true n is k̂   1. Given that we have 
observed K events of size ,̂k  we simply need to consider 
the sampling distribution of events of size k̂  under the 
hypothesis Bn( ,̂k ) and calculate the rarity of K in this 
sampling distribution. As before, this sampling distribu-
tion is binomial, Bn(N,θ k̂+1), and we simply calculate 
p(K|N,θ k̂+1). Previous authors estimated this sampling 
distribution using the Poisson approximation to the bi-
nomial distribution and using a fixed estimate of  (see 
supplemental material in Groulx et al. [2011]). I gener-
alize this by considering the full uncertainty in the esti-
mate of . The probability of observing K or fewer 
events of size k̂  under the null model Bn( ,̂k ) will be 
denoted . If we integrate over the uncertainty in , 
then  is calculated as

	 	 (10)

Here, we again draw samples, θ ,  from the posterior of 
 to use for Monte Carlo integration. This integration is 
approximated by the sum over i in the above equation. 
The rest of Eq. 10 is the sampling distribution of observa-
tions of size ,̂k  and we sum up to K to calculate the prob-
ability of seeing K or fewer observations. If  is very small, 
it means that our observation of K instances of size k̂  is 
quite rare under the model Bn( ,̂k ) and that we might 
exclude all observations of size k̂  as artifacts and accept 
the hypothesis n = k̂   1. I have provided code for the 
implementation of this analysis, as well as the calcula-
tion of  (Eqs. 8 and 4; see Supplemental material.)

A potential complication that has been ignored in 
this work is the possibility of multiple complexes within 
the same observation volume. This could occur if the 
density of complexes is sufficiently high or if complexes 
have a tendency to cluster together. In this instance, the 
observed distribution of bleaching events would be 
drawn from a heterogenous population of species, some 
of which contain n subunits and others which contain 
some multiple of n subunits. In fact, this complication 
seems to be fairly common in the literature, and the 
interpretation of such artifactual data needs to be for-
mally addressed. In previous work, the strategy of fitting 
sums of binomial distributions proved successful at 
overcoming this complication (McGuire et al., 2012). 
This strategy would be useful only to the extent that the 
uniqueness of fits could be established. In principle, the 
methods presented in this paper could be generalized 
to a model of heterogeneous populations of binomially 

distributions observations. Such a model would necessar-
ily have more parameters, which would exacerbate the 
problem of ill-posed inference. However, I believe that 
methods of confidence estimation should be applicable 
to a more generalized model. Future work remains to be 
done in this area.

Conclusions
Single molecule photobleaching is a pervasive tool for 
determining protein association that relies on attaching 
fluorescent probes to molecules of interest and counting 
distinct photobleaching events. Because there is a non-
zero probability of not observing a particular fluoro-
phore, the resulting distribution of photobleaching steps 
will be binomial. Although it seems a straightforward task 
to interpret such data and deduce stoichiometry, it was 
shown that this inference is ill posed. This means that 
many possible combinations of n and  can produce very 
similar observations. Because there is not generally a 
unique and optimal estimate of the relevant parameters 
for a given dataset, extracting the stoichiometry can be 
error prone without careful analysis. A general inference 
model was developed for this type of data that takes into 
account the full uncertainty in all model parameters.  
Using this framework, methods were developed for hy-
pothesis testing and calculating parameter confidence 
that allow for a rigorous interpretation of such data. This 
work provides a rigorous analytical basis for the interpre-
tation of single molecule photobleaching experiments.
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